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Optimum Partially Accelerated Life Test Plans with
Progressively Type I Interval-Censored Data
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Abstract: Because of continual improvement in manufacturing design, one often deals with
high quality products that are highly reliable with a substantially long life span. This
article discusses k-level step-stress partially accelerated tests under type I progressive interval
censoring with equal inspection intervals of length �. It is assumed that the lifetime of
a testing unit follows a Weibull distribution. The problem of choosing the optimal � is
considered according to a certain optimality criterion. Two selection criteria that enable us
to obtain the optimum test plans are investigated. Monte Carlo simulations are presented to
illustrate the proposed methods.

Keywords: Design; Inspection; Partially accelerated step-stress test; Reliability analysis; Type
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1. INTRODUCTION

The purpose of inspecting materials, goods, or semifinished goods is to accept or
reject a batch of products. Practically, an important quality characteristic is the
lifetime of a product. In many situations, standard or traditional life testing methods
may require time-consuming and prohibitively expensive testing time to obtain
enough failure data necessary to make the desired inference. In order to assure rapid
failure and then to shorten the testing period, all or some of the test units may be
subjected to stress conditions more severe than normal ones. Such accelerated life
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136 Ismail

tests (ALTs) or partially accelerated life tests (PALTs) result in shorter lives than
would be observed under normal operating conditions. In ALTs, the items are run
only at accelerated conditions (stress), whereas in PALTs they are run at both use
and accelerated conditions.

As indicated by Nelson (1990), stress can be applied in various ways; commonly
used methods are step-stress and constant-stress. Under step-stress PALTs, a test
item is first run at use condition and, if it does not fail for a specified time,
then it is run at accelerated condition until failure occurs or the observation is
censored. But the constant-stress PALTs run each item at either use condition or
accelerated condition only; that is, each unit is run at a constant-stress level until the
test is terminated. Accelerated test stresses involve higher than usual temperature,
voltage, pressure, load, humidity, etc., or some combination of these. The objective
of PALTs is to collect more failure data in a limited time without necessarily using
high stresses to all test units.

ALTs are often used for reliability analysis. According to step-stress ALTs
scheme, a test unit is subjected to successively higher levels of stress. ALTs can be
applied only if the relation that relates between the life and stress is known or can be
assumed; if not, ALTs cannot be applied and PALTs are a good alternative method
to use in reliability analysis via a tampered random variable model proposed by
DeGroot and Goel (1979). This model is described as Y = T , if T ≤ �; and Y =
� + �−1�T − ��, if T > �; where T is the lifetime of an item at use condition, Y is
its total lifetime, and � is the stress change time. The intent of such experiments is
to collect more failure data in a limited time without necessarily using a high stress
to all test units. As Bhattacharyya and Soejoeti (1989) indicated, step-stress PALTs
are practical for many problems of life testing where the test process requires a long
time if the test is simply carried out under the use condition.

In practice, step-stress PALTs are easier to implement and have many
advantages, including

1. Time saving: Step-stress PALTs can substantially shorten the duration of the test
without affecting the accuracy of lifetime distribution estimates.

2. Economical: Testing units under step-stress PALTs can reduce the costs of
experiments because not all test units are run at higher stresses.

3. Adaptable: Step-stress PALTs are flexible test strategy, especially for new
products when one presumably has little information regarding appropriate test
stresses. In such situations, it may not be easy for the experimenter to determine
suitable test stress levels. In simple PALTs, the second stress level, as well as
the transition time, could be dynamically adjusted as failure information is being
gathered under the first stress level.

To save more time and cost, ALTs or PALTs are used under censored sampling.
Censoring is very common in life tests. According to Wu et al. (2006), censoring
schemes arises in a life test whenever the experimenter does not observe the lifetimes
of all test units. The traditional and most common censoring schemes are type I
censoring and type II censoring. They do not allow for units to be removed from
the test at any point other than the final termination point. However, this allowance
may be needed when a compromise between reduced time of experiment and the
observation of some extreme lifetimes is sought. These reasons lead us into the area
of progressive censoring (PC). PC is a method that enables an efficient exploitation
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Type I Progressive Interval Censoring 137

of the available resources by continual removal of a prespecified number of unfailed
test units at the end of testing time at each stage.

The primary focus of this article is to combine PALTs with PC and then
to concentrate on the optimal choice of change points of the stress levels. Note,
however, that we will consider the equal-spaced case with a single � denoting the
duration of the testing stage at each step. That is, the lengths of inspection intervals
in k stages are all equal. This type of constant interval inspection plan is usually
used for administrative convenience in practice.

In practice, it is often impossible to continuously observe the testing process.
We can only record whether a test unit fails in an interval instead of measuring
failure time exactly. Hence, the test units are inspected intermittently. Recently,
progressive type I interval censoring has received the attention of many authors.
Some important literature can be found, for example see (Aggarwala, 2001; Ding
et al., 2010; Gouno et al., 2004; Huang and Wu, 2008; Shen et al., 2011; Wu et al.,
2006, 2008; Xiang and Tse, 2005; Yang and Tse, 2005).

All of the past works on step-stress PALTs (SSPALTs) had been considered
under traditional type I and type II censoring, type II progressive censoring, and
hybrid censoring; for example, see Aly and Ismail (2008) and Ismail (2010, 2012a,b,
2013). The present work will concentrate on a censoring scheme more general than
traditional type I censoring, namely, type I progressive interval censoring. The idea
of planning SSPALTs under progressive type I interval censoring scheme is a new
one.

The main objective of this article is to explore the choice of length of the
inspection interval � based on results of samples from Weibull distribution. We
investigate the selection of � according to two competing criteria of optimality:
variance (Var) optimality and determinant (D) optimality. The rest of this article is
organized as follows: In Section 2 the experiment method and its assumptions used
throughout the article are presented. In Section 3 the model is described. Point and
interval estimations of the parameters are considered in Section 4. Section 5 presents
optimum SSPALTs plans under progressive type I interval censoring scheme.
Section 6 contains the main findings and presents a discussion via simulation studies
to illustrate the theoretical results. Finally, Section 7 is devoted to the concluding
remarks and future works needed in this direction.

2. THE EXPERIMENT METHOD

Let us consider the following life-testing scheme with type I progressive interval
censoring. Suppose that n identical and independent units are simultaneously placed
on a life test at time 0 under design stress or use condition x0 and run until time
�, at which point the number of failed units n1 are counted, r1 surviving units are
arbitrarily withdrawn from the test, and the stress is changed to a higher level of
stress x1. The test is continued on n − n1 − r1 units until time 2�, at which point the
stress is changed to x2, and r2 units are withdrawn from the test, and so on. At time
k�, the surviving rk = n −∑k

i=1 ni −∑k−1
j=1 rj units are withdrawn, thereby terminating

the test. The objective here is to choose the optimal length of � according to a certain
optimality criterion.
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138 Ismail

3. THE MODEL

This article is concerned with two-parameter Weibull distribution, which is widely
employed as a model in life testing because of the many shapes it attains for various
values of shape parameter. It can therefore model a great variety of data and life
characteristics (Dimitri, 1991). The probability density function (p.d.f.) of a two-
parameter Weibull distribution is given by

fY �y� �� 	� = �

	

(y

	

)�−1
exp
−�y/	���� y > 0� � > 0� 	 > 0� (3.1)

The Weibull reliability function takes the form

S�y� = exp
−�y/	���� (3.2)

The corresponding failure rate function is given by

h�y� = �

	

(y

	

)�−1
(3.3)

Therefore, using k-level step-stress partially accelerated tests under type I
progressive interval censoring with equal inspection intervals of length �, the
cumulative distribution function is given by

F�y� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − exp
−�y/	���� if 0 < y ≤ ��

1 − exp
−�� + �1�y − ���/	���� if � < y ≤ 2��

�

�

�

1 − exp
−��k−1�� + �k−1�y − �k − 1����/	���� if �k − 1�� < y < ��

(3.4)

The matching p.d.f. of Y is given by

f�y� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�

	

(y

	

)�−1
exp
−�y/	���� if 0 < y ≤ ��

�1
�

	

(
� + �1�y − ���

	

)�−1

exp
−�� + �1�y − ���/	���� if � < y ≤ 2��

�

�

�

�k−1
�

	

(
�k − 1�� + �k−1�y − �k − 1����

	

)�−1

× exp
−��k − 1�� + �k−1�y − �k − 1����/	���� if �k − 1�� < y < ��

(3.5)

4. PARAMETER ESTIMATION

The idea behind maximum likelihood parameter estimation is to determine the
parameters that maximize the probability (likelihood) of the sample data. From
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Type I Progressive Interval Censoring 139

a statistical point of view, the method of maximum likelihood is considered to
be more robust and yields estimators with good statistical properties. In other
words, maximum likelihood methods are versatile and apply to most models and to
different types of data. In addition, they provide efficient methods for quantifying
uncertainty through confidence bounds. Because these estimators do not always
exist in closed form, numerical techniques are used to compute them.

This section discusses the process of obtaining the maximum likelihood
estimates of the parameters �, 	, and � based on progressively type I interval
censored data. Both point and interval estimations of the parameters are derived.

4.1. Point Estimation

Let n1, n2, � � � , nk be a progressively type I group-censored sample with censoring
scheme (r1, r2, � � � , rk) from a k-stage SSPALT. That is, the number of failed
units ni are observed while testing in the interval (�i − 1��� i�] at stress xi, i =
1� 2� � � � � k. Thus, ni� ni−1� � � � � n1 ∼ binomial (mi, Fi���), i = 1� 2� � � � � k, where mi =
n −∑i−1

j=1 nj −∑i−1
j=1 rj is the number of nonremoved surviving units at the beginning

of the ith stage and

Fi��� = F�i�� − F��i − 1���

1 − F��i − 1���
�

The likelihood function is then given by

k∏
i=1

F�i�� − F��i − 1����ni 1 − F�i���ri �

The natural logarithm of the likelihood function can be written as

ln L ∝
k∑

i=1


niln exp
−��i−1/	��� − exp
−��i/	���� − �mi − ni���i/	���� (4.1)

where �i−1 = �i − 1�� + �i−1�y − �i − 1��� and �i = i� + �i�y − i��.
The maximum likelihood estimations (MLEs) of �, 	, and � can be found by

solving the following equations:

�lnL

��
=

k∑
i=1

{
ni

�i−1 − �i

−��i−1/	��ln ��i−1/	��i−1 + ��i/	��ln ��i/	��i�

− �mi − ni���i/	��ln ��i/	�

}
= 0� (4.2)

where �i−1 = exp
−��i−1/	���and�i = exp
−��i/	���.

�lnL

�	
= �

	�+1

k∑
i=1

{
ni

�i−1 − �i

��
i−1�i−1 − ��

i �i� + �mi − ni��
�
i

}
= 0� (4.3)
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140 Ismail

�lnL

��i

= �

	�

k∑
i=1

{
ni

�i−1 − �i

�i�
�−1
i �y − i�� − �i−1�

�−1
i−1 �y − �i − 1����

− �mi − ni��
�−1
i �y − i��

}
= 0� (4.4)

Now, we have a system of nonlinear equations. It is clear that a closed-form solution
is very difficult to obtain. Therefore, an iterative procedure should be used to find
a numerical solution of the above system.

4.2. Interval Estimation

Here, the approximate confidence intervals of the parameters are derived based on
the asymptotic distributions of the MLEs of the elements of the vector of unknown
parameters � = (�, 	, �). It is known that the asymptotic distribution of the MLEs
of � is given by (see Miller, 1981)

���̂ − ��� �	̂ − 	�� ��̂ − ��� → N�0� F−1��� 	� ���� (4.5)

where F−1��� 	� �� is the variance–covariance matrix of the unknown parameters
� = ��� 	� ��. The elements of the matrix F−1; Fij���, i, j = 1� 2� � � � � k; can be
approximated by Fij��̂�, where

Fij��̂� = −�2ln L���

��i��j

��=�̂ � (4.6)

Now, the elements of the observed information matrix F can be expressed as
follows:

�2ln L

��2
=

k∑
i=1

{
ni

��i−1 − �i�
2
−��i−1/	���ln ��i−1/	�2�i−1+��i−1/	�2��ln ��i−1/	��2�i−1

+ ��i/	���ln ��i/	��2�i − ��i/	�2��ln ��i/	��2�i���i−1 − �i�

− −��i−1/	��ln ��i−1/	��i−1 + ��i/	��ln ��i/	��i�

× −��i−1/	��ln ��i−1/	��i−1

+ ��i/	��ln ��i/	��i� − �mi − ni���i/	���ln ��i/	��2

}
� (4.7)

�2ln L

�	2
= �

	2��+1�

[
�

k∑
i=1

{
ni

��i−1 − �i�
2 
��i−1 − �i��

2�
i−1�i−1 − �2�

i �i�

− ���
i−1�i−1 − ��

i �i�
2�

}

− �� + 1�	�
k∑

i=1

{
ni

�i−1 − �i

��
i−1�i−1 − ��

i �i� + �mi − ni��
�
i

}]
� (4.8)
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Type I Progressive Interval Censoring 141

�2ln L

��2
i

= �

	�

k∑
i=1

{
ni

��i−1 − �i�
2 ��i−1 − �i�

[
− �

	�
�i�

2��−1�
i �y − i��

+ �� − 1��i�
�−2
i �y − i��

+ �

	�
�i−1�

2��−1�
i−1 �y − �i − 1��� − �� − 1��i−1�

�−2
i−1 �y − �i − 1���

]

+ �i�
�−1
i �y − i�� − �i−1�

�−1
i−1 �y − �i − 1����

×
[

�

	�
�i−1�

�−1
i−1 �y − �i − 1��� + �

	�
�i�

�−1
i �y − i��

]]

− �mi − ni��� − 1���−2
i �y − i��2

}
� (4.9)

�2 ln L

���	
=

k∑
i=1

{
ni

��i−1 − �i�
2

{[
���

i−1

	�+1
ln ��i−1/	��i−1

+ ��i−1/	���i−1

(
1
	2

− �ln��i−1/	���
i−1

	�+1

)

+ ���
i

	�+1
ln ��i/	��i + ��i/	���i

(
1
	2

− � ln��i/	���
i

	�+1

)]
��i−1 − �i�

− �

	�+1
−��i−1/	��ln ��i−1/	��i−1 + ��i/	��ln��i/	��i��i−1�

�
i−1 − �i�

�
i �

}

− �mi − ni��
�
i

	�+1
�ln ��i/	� + 1�

}
� (4.10)

�2 ln L

����i

=
k∑

i=1

ni

��i−1 − �i�

{
−�i−1�y − �i−1� ����i−1/	��−1

	
�ln ��i−1/	� + 1�

+ �
i−1

��y − �i − 1���

	
��i−1/	�2�−1ln ��i−1/	�

+ �i�y − i����i/	��−1

	
�ln ��i/	� + 1�

− �
i
��y − i��

	
��i/	�2�−1ln ��i/	�

}

+ �ni−��i−1/	��ln ��i−1/	��i−1 + ��i/	��ln ��i/	��i�

	��i−1 −�i�
2

× �
i−1

�y − �i − 1�����i−1/	��−1 + �
i
�y − i����i/	��−1�

− �mi − ni�
��i/	��−1�y − i��

	
�ln ��i/	� + 1�� (4.11)
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and

�2 ln L

�	��i

= �

	2�

[{
k∑

i=1

{
ni

��i−1 − �i�
2

[
���i−1 − �i�

	�+1
�i�

2�−1
i �y − i��

− �i−1�
2�−1
i−1 �y − �i − 1����

− �i�
�−1
i �y − i�� − �i−1�

�−1
i−1 �y − �i − 1����

�

	�+1
�i�

�
i − �i−1�

�
i−1�

]}
	�

−
[

k∑
i=1

{
ni

�i−1 − �i

�i�
�−1
i �y − i�� − �i−1�

�−1
i−1 �y − �i − 1����

− �mi − ni��
�−1
i �y − i��

}]
�	�−1

]
� (4.12)

Thus, the approximate 100�1 − ��% two-sided confidence intervals for �, 	, and �
are, respectively, given by

�̂ ± Z�/2

√
F−1

11 ��̂�� 	̂ ± Z�/2

√
F−1

22 �	̂� and �̂i ± Z�/2

√
F−1

33 ��̂i�� i = 1� 2� � � � � k�

(4.13)

where Z�/2 is the upper (�/2)th percentile of a standard normal distribution.

5. OPTIMUM TEST PLAN

The main purpose of this study is to explore the choice of �, length of the
inspection interval, in k-stage SSPALTs with type I progressive interval censoring.
Two selection criteria are proposed that enable one to choose the optimal value of �.

5.1. Var-Optimality

The mean lifetime is an important characteristic in reliability analysis. In a step-
stress setting, the experimenter is often interested in estimating the mean life at
use condition with maximum precision. Let ˆ̄T be the MLE of mean lifetime at use
condition. Then, the criterion function is defined by

���� = AVar �ln ˆ̄T� = n1� 1� x0�F
−1��� 	� ��1� 1� x0�

′� (5.1)

where x0 is the design stress and T̄ is the mean time to failure of the Weibull
distribution. The variance-optimal � is then obtained by minimizing ����.

5.2. D-Optimality

Yet another optimality criterion is based on the determinant of Fisher’s information
matrix F. It has been extensively used in the context of planning life tests. If one
is more interested in estimation with high precision, a more reasonable criterion

D
ow

nl
oa

de
d 

by
 [

K
in

g 
Sa

ud
 U

ni
ve

rs
ity

] 
at

 0
2:

36
 1

0 
Ja

nu
ar

y 
20

16
 



Type I Progressive Interval Censoring 143

should be D-optimality, which takes into account the overall parameter space. It
can be constructed in terms of the generalized asymptotic variance (GAV) of the
MLEs of the model parameters. This GAV is proportional to reciprocal of the
determinant of Fisher information matrix; see Bai et al. (1993), so that maximizing
this determinant is equivalent to minimizing GAV. The criterion function is then
defined by

GAV��̂� 	̂� �̂� = 1
�F� � (5.2)

Hence, the optimal length of inspection interval � is chosen so that GAV is
minimized.

It is noted that both variance-optimality and D-optimality criteria are based
on information matrix F. These criteria have been extensively used in the design
selection process for designed experiments.

6. SIMULATION RESULTS AND DISCUSSION

In this section, to explore the optimal choice of �, length of the inspection interval,
in k-stage SSPALTs with type I progressive interval censoring, simulation studies
are performed using different values of sample size and number of stress levels. The
optimal value of � according to two optimality criteria, variance-optimality and D-
optimality, is investigated. Let �∗

V and �∗
D be optimal lengths of inspection intervals

according to variance-optimality and D-optimality, respectively. Tables 1, 2, and 3
present �∗

V and �∗
D values for k = 2� 3� 4 when n equals 30, 50, 100, 200, 300, 400,

500 and � equals 0.05, 0.10, 0.15.
It is assumed that the proportions to be removed at different stages are all

equal. That is, �1 = �2 = · · · = �k = �. We assume that the lengths of inspection
intervals are all equal for simplicity of discussion. The equilength assumption is
also convenient for practitioners. The proposed optimality criteria can lead to better
designs for conducting life tests. It provides the most efficient use of experimenter’s
resources.

From Tables 1–3, we can record the following findings:

1. For fixed � and n, both �∗
V and �∗

D decrease as k increases. That is, the larger
number of stress levels, the more likely a short length of inspection interval.

2. For fixed � and k both �∗
V and �∗

D increase as n increases. That is, the larger
number of test units n, the larger the optimal length of the inspection interval.

3. When k and n are fixed, both �∗
V and �∗

D decrease as � increases. That is, the larger
the proportion to be removed at each stage, the shorter the optimal length of the
inspection interval.

4. The D-optimal length of inspection interval �∗
D is always smaller than the

variance-optimal length of inspection interval �∗
V .

5. It is shown that the second proposed criterion (D-optimality) can reduce the
required number of failures and, consequently, reduce the total testing time
without losing much precision.

6. When � increases, the experiment is terminated more quickly. However, it is
important to note that with a much larger � the experiments will be less
informative and lead to larger standard errors in estimates. These results coincide
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with the note of Wu et al. (2006). That is, smaller or moderate, not larger, values
of the proportion to be removed at each stage are recommended.

The design of an optimal life test already enables us to obtain estimations with a
high degree of precision. This coincides with the note of Wu and Huang (2010).
They said that in order to obtain a precise estimate of mean life, one needs to design
an optimal life test.

Table 1. Optimal lengths �∗
V and �∗

D according to Var-optimality and D-optimality under
k-stage SSPALTs and progressive type I interval censoring with proportion of removals
� = 0�05 when � = 2; 2.5; 3, 	 = 2�5, and � = 0�5.

K = 2 K = 3 K = 4

n �∗
D �∗

V �∗
D �∗

V �∗
D �∗

V

30 24 27 21 25 19 22
50 43 48 37 42 33 38

100 87 93 64 72 37 41
200 169 182 127 154 71 83
300 224 253 146 159 83 103
400 320 341 210 246 113 123
500 411 449 268 308 132 162

Table 2. Optimal lengths �∗
V and �∗

D according to Var-optimality and D-optimality under
k-stage SSPALTs and progressive type I interval censoring with proportion of removals �
= 0.10 when � = 2; 2.5; 3, 	 = 2.5, and � = 1.

K = 2 K = 3 K = 4

n �∗
D �∗

V �∗
D �∗

V �∗
D �∗

V

30 20 23 18 21 15 17
50 39 42 33 36 21 26

100 64 71 49 57 24 31
200 126 138 96 117 57 64
300 167 192 105 121 61 76
400 231 256 162 186 85 99
500 312 338 194 238 104 123

Table 3. Optimal lengths �∗
V and �∗

D according to Var-optimality and D-optimality under
k-stage SSPALTs and progressive type I interval censoring with proportion of removals � =
0�15 when � = 2; 2.5; 3, 	 = 2�5, and � = 1�5.

K = 2 K = 3 K = 4

n �∗
D �∗

V �∗
D �∗

V �∗
D �∗

V

30 17 21 14 19 8 10
50 22 29 18 20 11 14

100 24 32 20 22 13 17
200 52 65 37 45 22 25
300 68 86 41 48 23 30
400 94 116 64 74 32 38
500 124 156 77 97 40 47
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7. CONCLUSION

In reliability analysis of progressively interval censored life test data, for given
stress levels and number of test units, determining the appropriate length of
the inspection interval is an important issue for experimenters. Two optimality
criteria—D-optimality and variance-optimality—for choosing the optimal length of
the inspection interval are used for comparison purpose. This article has discussed
a union of three ideas of progressive censoring, interval data, and SSPALTs,
developing k-stage SSPALTs with progressively type I interval censored samples. In
the case of certain life tests, some test units need to be removed at points other than
the final termination point of the experiment and it is not practical to screen the
test units constantly. Here, the progressive interval-censoring scheme permits units
removed early and inspected from time to time.

Based on the fourth finding, the optimal length of the inspection interval
is shorter in the case of the D-optimality criterion. Therefore, the D-optimality
criterion is recommended for obtaining the optimal life test plan. In conclusion,
these results provide valuable insight for practitioners to set up optimal life test
plans under progressive type I interval censoring. As a future work, designing k-
stage SSPALTs with progressively type I interval-censored samples can be extended
to deal with unequal proportions to be removed at different stages and to optimize
the sample size.

NOMENCLATURE

k number of inspections
mi number of nonremoved surviving units at the beginning of the ith stage
n number of test units
ni number of failures at the ith stage
ri number of removals at the ith stage
xi stress level, i = 1� 2� � � � � k� x1 < x2 < · · · < xk

x0 design stress
yi observed lifetime of unit i tested under SSPALTs
� Weibull distribution shape parameter (� > 0)
� ≡ �i acceleration factors (�i > 1, i = 1� � � � � k)
�1i� �2i indicator functions: �1i ≡ I�yi ≤ ��, �2i ≡ I�yi > ��
	 Weibull distribution scale parameter (	 > 0)
�i proportion of removals at the ith stage
� length of the inspection interval
�∗

D optimal � according to the D-optimality criterion
�∗

V optimal � according to the Var-optimality criterion
∧ denotes maximum likelihood estimate
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