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Recently, progressively hybrid censoring schemes have become quite popular in life testing and reliability
studies. In this article, the point and interval maximum-likelihood estimations of Weibull distribution
parameters and the acceleration factor are considered. The estimation process is performed under Type-I
progressively hybrid censored data for a step-stress partially accelerated test model. The biases and mean
square errors of the maximum-likelihood estimators are computed to assess their performances in the
presence of censoring developed in this article through a Monte Carlo simulation study.
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1. Introduction

Due to rapid advance in technology and increasing global competition, pressure on manufactures to
produce high quality products has increased. Thus, the mean times to failure of those products are
too large under typical operating conditions. So, in order to shorten life or accelerate performance
degradation, all of test units or some of them are subject to stresses which are more severe than
usual like temperature, humidity, pressure, voltage, vibration etc. If the experimenter puts all test
units under such stresses, the test is called accelerated life test (ALT), but if he puts some of them
then the test is called partially accelerated life test (PALT). The information obtained from the
test performed in accelerated environment is used to predict the actual product performance in
the usual environment.

As Nelson [1] indicates, the stress can be applied in various ways, the commonly used methods
are step-stress and constant-stress. Under step-stress PALT (SSPALT), a test item is first run at
use (normal) condition and, if it does not fail for a specified time, then it is run at accelerated
condition (stress) until failure occurs or the observation is censored. But the constant-stress PALT
runs each item at either the use condition or the accelerated condition only, i.e. each unit is run
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at a constant-stress level until the test is terminated. The objective of a PALT is to collect more
failure data in a limited time without necessarily using high stresses to all test units.

PALT has been studied under conventional Type-I and Type-II censoring schemes by sev-
eral authors, for example, see Goel,[2] DeGroot and Goel,[3] Bhattcharyya and Soejoeti,[4] Bai
and Chung,[5] Bai et al.,[6] Abdel-Ghaly et al.,[7–9] Abdel-Ghani,[10,11] Ismail,[12] Aly and
Ismail,[13] Ismail and Sarhan,[14] Ismail andAly,[15] Ismail.[16]Also, SSPALT has been studied
under hybrid censoring, see Ismail.[17] In addition, Ismail [18] has considered SSPALT, using
the progressive Type-II censoring scheme.

Based on the progressively Type-I hybrid censoring scheme, there are some studies under
ALT, for example, see [19,20]. But under PALT there are no studies have taken place before in
this respect. So, this article will concentrate on SSPALT under the progressively Type-I hybrid
censoring scheme. This scheme under SSPALT will be described in the next section.

The rest of this article is arranged as follows. In Section 2, the model and the available data
are described. The maximum-likelihood (ML) estimators of the SSPALT model parameters are
provided in Section 3. Also, in Section 3, the asymptotic confidence bounds for the model param-
eters are constructed based on the asymptotic distribution of ML estimators. Section 4 contains
the simulation results. Concluding remarks and further studies are given in Section 5.

2. Description of the model

Assume that the random variable Y representing the lifetime of a product has Weibull distribution
(WD) with the shape and scale parameters as α and λ, respectively. So, the probability density
function (pdf) of Y is

fY (y; α, λ) = α

λ

( y

λ

)α−1
e−(y/λ)α ; y > 0, α > 0, λ > 0. (1)

WD is one of the most common distributions which are used to analyse several lifetime data. Its
hazard function can be increasing, decreasing and constantly depending on the shape parameter
value. Thus, this distribution has lots of flexibility compared to other distributions.

The survival function of WD in Equation (1) takes the form as in the following:

S(y) = exp
{
−

( y

λ

)α}
, (2)

and the corresponding failure rate function is given by

h(y) = α

λ

( y

λ

)α−1
. (3)

The pdf of Y under SSPALT model can be given by

f (y) =

⎧⎪⎨
⎪⎩

0, y ≤ 0,

f1(y) ≡ fY (y; α, λ), 0 < y ≤ τ ,

f2(y), y > τ ,

(4)

where

f2(y) ≡ fY (y; α, λ, β) = β
α

λ

(
τ + β(y − τ)

λ

)α−1

exp

{
−

( [τ + β(y − τ)]
λ

)α}
(5)
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2488 A.A. Ismail

which is obtained by the transformation-variable technique using the density in Equation (1) and
the model proposed by DeGroot and Goel [3] which is given by

Y =
{

T if T ≤ τ ,

τ + β−1(T − τ) if T > τ ,
(6)

where T is the lifetime of the unit under use condition, τ is the stress change time and β is the
acceleration factor; β > 1.

Now, the data available under progressively Type-I hybrid censoring scheme can be described
as follows. Under this censoring scheme, suppose that n identical and independent units are placed
on a life test. Each of the n units is first run under the use condition. This use condition level is
changed to an accelerated condition at time τ at which m unfailed units of the remaining units are
randomly removed and the test is continued. It is noted that τ and m are prefixed. If the rth failure
(r < n) occurs at a time yr:n before a prefixed η > τ , the experiment terminates at the time point
yr:n. But if yr:n > η, then all the remaining units are removed and the experiment terminates at
the time η. This censoring scheme is called the progressively Type-I hybrid censoring scheme. It
is noted that compared to the conventional Type-I censoring scheme, the termination time of the
progressively Type-I hybrid censoring scheme is at most η. Let nu be the number of units that fail
before time τ , na be the number of units that fail before time η at accelerated condition and nf be
the number of units that fail before the experiment terminates. Thus, we have

nf =
{

nu + na = r, if r < yr:n ≤ η,

nu + na < r, if yr:n ≤ η.
(7)

Under the progressively Type-I hybrid censoring scheme, we can observe the following types of
observations:

Set 1: y1:n < · · · < ynu:n ≤ τ < ynu+1:n < · · · < yr:n ≤ η, if τ < yr:n ≤ η

Set 2: y1:n < · · · < ynu:n ≤ τ < ynu+1:n < · · · < ynu+na :n ≤ η, if yr:n > η

That is, two main sets of data can be considered. We shall not consider the case that no failures
can be observed either at the use condition or at the accelerated condition.

3. Maximum-likelihood estimation

This section discusses the process of obtaining the ML estimates of the parameters α, λ and β

based on progressively Type-I hybrid censored data under the SSPALT model. Both point and
interval estimations of the parameters are considered.

3.1. Point estimation

Here, the ML estimates of the unknown parameters are given. Based on the observed progressively
Type-I hybrid censored data from WD, we provide the likelihood function under SSPALT for the
two sets of data indicated above as follows.

The likelihood function of the data set 1 is given by

L(α, λ, β) ∝
nu∏

i=1

f1(yi) · [S1(τ )]m ·
r∏

i=nu+1

f2(yi) · [S2(yr:n)]n−r−m, (8)
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where

s1(y) = exp
{
−

( y

λ

)α}
and

s2(y) = exp

{
−

[
(τ + β(y − τ))

λ

]α}
,

For data set 2, the likelihood function is given by

L(α, λ, β) ∝
nu∏

i=1

f1(yi) · [S1(τ )]m.
nu+na∏

i=nu+1

f2(yi) · [S2(η)]n−(nu+na)−m. (9)

To obtain the ML estimates of the model parameters, it is usually easier to maximize the natural
logarithm of the likelihood function than the likelihood function itself. The natural logarithm of
the likelihood function for both data set 1 and data set 2 is, respectively, as follows:

ln L(α, λ, β) = r ln α − rα ln λ + na ln β + (α − 1)

{
nu∑

i=1

ln yi +
r∑

i=nu+1

ln[τ + β(yi − τ)]
}

− α

λ

{
nu∑

i=1

yi +
r∑

i=nu+1

[τ + β(yi − τ)] + mnuτ

+ (n − r − m)na[τ + β(yr:n − τ)]
}

, (10)

and

ln L(α, λ, β) = (nu + na) ln α − (nu + na)α ln λ + na ln β + (α − 1)

×
{

nu∑
i=1

ln yi +
nu+na∑

i=nu+1

ln[τ + β(yi − τ)]
}

− α

λ

{
nu∑

i=1

yi +
nu+na∑

i=nu+1

[τ + β(yi − τ)]

+ mnuτ + [n − (nu + na) − m]na[τ + β(η − τ)]
}

.

We shall consider the case of data set 1. In a similar way, the case of data set 2 can be studied.
Considering the case of data set 1 and equating the partial derivatives of ln L to zero with

respect to α, λ and β, the resulting three equations are as follows:

∂ ln L

∂α
= r

α
− r lnλ +

nu∑
i=1

ln yi +
r∑

i=nu+1

ln ψi

− 1

λ

{
nu∑

i=1

yi +
r∑

i=nu+1

ψi + mnuτ + (n − r − m)naψr

}
= 0, (11)

where ψi = τ + β(yi − τ) and ψr = τ + β(yr:n − τ).

∂ ln L

∂λ
= − rα

λ
+ α

λ2

{
nu∑

i=1

yi +
r∑

i=nu+1

ψi + mnuτ + (n − r − m)naψr

}
= 0, (12)

∂ ln L

∂β
= na

β
+ (α − 1)

r∑
i=nu+1

yi − τ

ψi
− α

λ

{
r∑

i=nu+1

(yi − τ) + (n − r − m)naψr

}
= 0, (13)
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2490 A.A. Ismail

From Equation (11), we can obtain α̂ as a function of λ̂ and β̂ as

α̂ = r

r ln λ − (
∑nu

i=1 ln yi + ∑r
i=nu+1 ln ψi) + (1/λ)

{∑nu
i=1 yi + ∑r

i=nu+1 ψi + mnuτ + (n − r − m)naψr}
. (14)

Moreover, from Equation (12), we can obtain λ̂ as a function of β̂ as

λ̂ =
∑nu

i=1 yi + ∑r
i=nu+1 ψi + mnuτ + (n − r − m)naψr

r
. (15)

Now, the system is reduced to one nonlinear likelihood equation of β. It can be solved iteratively
using an iterative method such as the Newton–Raphson method to obtain the ML estimate of β.
Therefore, the ML estimates of both λ and α can be easily obtained from Equations (15) and (14),
respectively.

3.2. Interval estimation

In this subsection, the approximate confidence intervals of the parameters are derived based on the
asymptotic distribution of the ML estimators of the elements of the vector of unknown parameters
	 = (α, λ, β). It is known that the asymptotic distribution of the ML estimators of 	 is given by,
see [21]

((α̂ − α), (λ̂ − λ), (β̂ − β)) → N(0, I−1(α, λ, β)),

where I−1(α, λ, β) is the variance–covariance matrix of the unknown parameters 	 = (α, λ, β).
The elements of the 3 × 3 matrix I−1, Iij (α, λ, β), i, j = 1, 2, 3; can be approximated by Iij(α̂, λ̂, β̂),
where

Iij(	̂) = − ∂2 ln L(	)

∂	i∂	j

∣∣∣∣
	=	̂

.

Now, we get the following:

∂2 ln L

∂α2
= − r

α2
, (16)

∂2 ln L

∂α ∂λ
= − r

λ
+ 1

λ2

{
nu∑

i=1

yi +
r∑

i=nu+1

ψi + mnuτ + (n − r − m)naψr

}
, (17)

∂2 ln L

∂α ∂β
=

r∑
i=nu+1

yi − τ

ψi
− 1

λ

{
r∑

i=nu+1

(yi − τ) + (n − r − m)na(yr:n − τ)

}
, (18)

∂2 ln L

∂λ2
= rα

λ2
− 2α

λ3

{
nu∑

i=1

yi +
r∑

i=nu+1

ψi + mnuτ + (n − r − m)naψr

}
, (19)
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∂2 ln L

∂λ ∂β
= α

λ2

{
r∑

i=nu+1

(yi − τ) + (n − r − m)na(yr:n − τ)

}
, (20)

∂2 ln L

∂β2
= − na

β2
− (α − 1)

r∑
i=nu+1

(yi − τ)2

ψ2
i

, (21)

Thus, the approximate 100(1 − γ )% two-sided confidence intervals for α, λ and β are,
respectively, given by

α̂ ± Zγ /2

√
I−1
11 (α̂, λ̂, β̂), λ̂ ± Zγ /2

√
I−1
22 (α̂, λ̂, β̂) and β̂ ± Zγ /2

√
I−1
33 (α̂, λ̂, β̂), (22)

where Zγ /2 is the upper (γ /2)th percentile of a standard normal distribution.

4. Simulation studies

In this section, simulation studies are conducted to discuss the performance of the ML estimators
in terms of their biases and mean square errors (MSEs) for different choices of n, m/n, r/n, τ and
η values. Also, 95% asymptotic confidence intervals based on the asymptotic distribution of the
ML estimators are constructed and their lengths are computed.

The simulation study is carried out according to the following algorithm:

(1) Specify the values of n, m/n, r/n, τ and η.
(2) Specify the values of the parameters α, λ and β.
(3) Generate a random sample of size n from the random variable Y given by Equation (6) and

sort it. The Weibull random variable can be easily generated. For example, if U represents a
uniform random variable from [0, 1], then Y = −λ [ln(1 − U)]1/α has WD with pdf given
by Equation (1) if y ≤ τ . But if y > τ then Y = τ + β−1{−λ [ln(1 − U)]1/α − τ } has WD
with pdf given by Equation (5).

(4) Use the model given by Equation (4) to generate progressively Type-I hybrid censored data
for a givenn, m/n, r/n, τ , η (η > τ ), α, λ and β. Two data sets can be considered as

Set 1: y1:n < · · · < ynu:n ≤ τ < ynu+1:n < · · · < yr:n ≤ η, if τ < yr:n ≤ η,
and
Set 2: y1:n < · · · < ynu:n ≤ τ < ynu+1:n < · · · < ynu+na:n ≤ η, if yr:n > η.

(5) Use the progressively Type-I hybrid censored data to compute the ML estimates of the model
parameters. The Newton–Raphson method is applied for solving the nonlinear equation given
by Equation (13) to obtain the ML estimate of the parameter β. Then obtain the ML estimates
of λ and α from Equations (15) and (14), respectively.

(6) Replicate the steps 3–5 10,000 times.
(7) Compute the average values of biases and MSEs associated with the ML estimators of the

parameters.
(8) Compute the average values of intervals lengths (ILs) associated with each parameter with

confidence level 1 − γ = 0.95.
(9) Steps 1–8 are done with different values of n, m/n, r/n, τ , η (η > τ ), α, λ and β.

Conducting the above algorithm, the average values of biases, MSEs and ILs are obtained
using 10,000 replications to avoid randomness. The results are reported in Tables 1 and 2 based
on different values of n, m/n, r/n, τ , η (η > τ ), α, λ and β to investigate the performance of the
ML estimators of the model parameters.
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2492 A.A. Ismail

It is shown from Table 1 when n = 30 for the second combination of (r/n, τ , η) = (0.40, 5, 8)
that the biases and MSEs of the estimators are the same as the third combination of (r/n, τ ,
η) = (0.40, 5, 11). This means that the time of the rth failure yr:n (r < n) occurs before the
prefixed η > τ and the experiment terminates at the time point yr:n. While Table 2 shows that when
n = 75, the biases and MSEs of the estimators for the first combination of (r/n, τ , η) = (0.25,
2, 8) are the same as the second combination of (r/n, τ , η) = (0.40, 2, 8). This proposes that the
time of the rth failure yr:n is greater than η and the experiment terminates at the time η.

Moreover, from Tables 1 and 2, the following observations can be made.

(1) For fixed n, τ and η, the MSEs decrease as r/n increases.
(2) For fixed r/n, τ and η, the MSEs decrease as n incrases.

The same pattern is observed for the biases and ILs.
In addition, point (s) and 95% confidence interval (sL, sU) estimations for the reliability at

mission times of y = 1, 1.5, 2, 3, 4, 6 and 8 are obtained. The estimations of the true reliability
are computed using the following forms:

ŝ1(y) = exp

{
−

(
y

λ̂

)α̂
}

, if y ≤ τ ,

or

ŝ2(y) = exp

⎧⎨
⎩−

[
(τ + β̂(y − τ))

λ̂

]α̂
⎫⎬
⎭ , if y � τ .

As Soliman [22] indicates, estimation of the reliability function of some equipment is one of the
main problems of reliability theory. In most practical applications and life-test experiments, the
distributions with positive domain, e.g. Weibull, Burr-XII, Pareto, Beta, and Rayleigh, are quite
appropriate models. There have been many papers on estimating the reliability function of these
distributions in non-Bayes as well as Bayes contexts, e.g. [23–26].

The results of the true reliability estimations are presented in Tables 3 and 4.

Table 1. Average values of the biases, MSEs (between brackets) and ILs when α, λ, β and m/n set at 1.5, 2, 3.5 and
0.05, respectively.

n Parameters (r/n, τ , η) (0.25, 5, 8) (0.40, 5, 8) (0.40, 5, 11)

20 α 0.2301 (0.1988), 2.8956 0.2074 (0.1765), 2.6132 0.1802 (0.1508), 2.4311
λ 0.3452 (0.3226), 3.3447 0.3245 (0.2987), 3.1682 0.3078 (0.2679), 2.8753
β 0.3971 (0.3527), 3.7458 0.3516 (0.3182), 3.4690 0.3249 (0.2873), 3.1433

25 α 0.1944 (0.1567), 2.6859 0.1722 (0.1374), 2.5724 0.1562 (0.1327), 2.2105
λ 0.3178 (0.2913), 3.1262 0.2949 (0.2617), 2.9821 0.2861 (0.2473), 2.6492
β 0.3764 (0.3313), 3.3172 0.3181 (0.2751), 2.9575 0.2971 (0.2633), 2.8056

30 α 0.1542 (0.1323), 2.4372 0.1233 (0.1104), 2.0613 0.1233 (0.1104), 2.0602
λ 0.2961 (0.2485), 2.9068 0.2614 (0.2173), 2.6572 0.2614 (0.2173), 2.4523
β 0.3208 (0.2813), 3.0411 0.2755 (0.2412), 2.7290 0.2755 (0.2412), 2.7490

50 α 0.1271 (0.1065), 2.1621 0.0941 (0.0715), 1.8748 0.0801 (0.0627), 1.6952
λ 0.2354 (0.1974), 2.6893 0.1582 (0.1392), 2.3402 0.1137 (0.1049), 2.2106
β 0.2735 (0.2466), 2.7148 0.1876 (0.1528), 2.4512 0.1479 (0.1103), 2.3476

75 α 0.0638 (0.0410), 1.5215 0.0517 (0.0370), 1.4024 0.0352 (0.0141), 1.3159
λ 0.1543 (0.1192), 1.7065 0.1131 (0.0751), 1.6835 0.0886 (0.0418), 1.3760
β 0.1807 (0.1247), 1.7120 0.1364 (0.0801), 1.6055 0.0925(0.0631), 1.5211

100 α 0.0118 (0.0050), 1.3417 0.0073 (0.0041), 1.2811 0.0047 (0.0029), 1.1507
λ 0.0415 (0.0163), 1.5213 0.0176 (0.0115), 1.4105 0.0124 (0.0066), 1.2358
β 0.0721 (0.0316), 1.6862 0.0418 (0.0162), 1.4725 0.0275(0.0073), 1.3152
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Table 2. Average values of the biases, MSEs (between brackets) and ILs when α, λ, β and m/n set at 0.5, 0.7, 1.6
and 0.08, respectively.

n Parameters (r/n, τ , η) (0.25, 2, 8) (0.40, 2, 8) (0.40, 2, 11)

20 α 0.2683 (0.2286), 3.2341 0.2282 (0.1942), 2.7740 0.1873 (0.1721), 2.6885
λ 0.4385 (0.3812), 3.4785 0.3827 (0.3521), 3.1543 0.3478 (0.3170), 2.9135
β 0.4728 (0.4171), 3.5231 0.4189 (0.3749), 3.3478 0.3711 (0.3411), 3.2146

25 α 0.2283 (0.2051), 2.9244 0.1973 (0.1669), 2.6388 0.1592 (0.1322), 2.5720
λ 0.3916 (0.3355), 3.1076 0.3591 (0.3092), 2.9721 0.3116 (0.2853), 2.7850
β 0.4287 (0.3642), 3.4106 0.3877 (0.3362), 3.2781 0.3582 (0.3056), 2.9462

30 α 0.1758 (0.1641), 2.7109 0.1485 (0.1205), 2.5730 0.1162 (0.0915), 2.4155
λ 0.3361 (0.2920), 2.9815 0.3134 (0.2698), 2.7527 0.2811 (0.2513), 2.6418
β 0.3724 (0.3381), 3.2815 0.3422 (0.3076), 2.8669 0.3252 (0.2735), 2.7867

50 α 0.1382 (0.1124), 2.3520 0.1201 (0.0954), 1.9246 0.1059 (0.0743), 1.8374
λ 0.2638 (0.2215), 2.7133 0.2261 (0.1782), 2.5491 0.1928 (0.1536), 2.4179
β 0.3243 (0.2712), 2.8719 0.2477 (0.2055), 2.7426 0.2158 (0.1764), 2.6170

75 α 0.0947 (0.0501), 1.9622 0.0947 (0.0501), 1.9602 0.0478 (0.0276), 1.4854
λ 0.1937 (0.1485), 2.0711 0.1937 (0.1485), 2.0704 0.1006 (0.0625), 1.5844
β 0.2473 (0.1876), 2.1352 0.2473 (0.1876), 2.1316 0.1173(0.0744), 1.6329

100 α 0.0325 (0.0085), 1.5964 0.0094 (0.0071), 1.4621 0.0066 (0.0052), 1.3914
λ 0.0861 (0.0361), 1.7853 0.0326 (0.0156), 1.6027 0.0211 (0.0091), 1.4056
β 0.1138 (0.0650), 1.8346 0.0582 (0.0213), 1.6415 0.0410(0.0102), 1.5211

Table 3. Point and confidence interval estimations for the reliability when α, λ, β

and m/n set at 0.5, 0.7, 1.6 and 0.08, respectively, for a mission time t using τ = 2.

T s sL sU

1 0.8371 0.7990 0.8752
1.5 0.8104 0.7692 0.8516
3 0.7723 0.7168 0.8278
4 0.7309 0.6749 0.7869

Table 4. Point and confidence interval estimations for the reliability when α, λ, β

and m/n set at 1.5, 2, 3.5 and 0.05, respectively, for a mission time t using τ = 5.

T s sL sU

2 0.7864 0.7455 0.8273
3 0.7429 0.7032 0.7826
6 0.6944 0.6577 0.7311
8 0.6431 0.5990 0.6872

5. Concluding remarks and further studies

In this article, we have discussed the likelihood estimation for parameters of WD and the accelera-
tion factor when the data are progressively Type-I hybrid censored under SSPALTs. It is observed
that the ML estimates cannot be obtained in a closed form and we have proposed to use the
Newton–Raphson as an iterative method to compute them. The approximate confidence intervals
of the model parameters are also constructed based on the asymptotic distribution of ML estima-
tors. The performances of the estimators are investigated using the biases and MSEs by Monte
Carlo simulations. It is observed that they are quite satisfactory, especially when the sample size
is sufficiently large. Finally, as a future work, the Bayesian inference in the case of SSPALT under
the same censoring scheme proposed in this article will be considered. Also, another important
aspect needed in this direction is to consider the progressively Type-II hybrid censoring scheme.
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