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BAYESIAN ESTIMATION UNDER CONSTANT-STRESS PARTIALLY

ACCELERATED LIFE TEST FOR PARETO DISTRIBUTION

WITH TYPE-I CENSORING

Ali A. Ismail
a,b

UDC 539.4

This article discusses likelihood and Bayesian estimations under constant-stress partially accelerated

life test model with type-I censoring assuming Pareto distribution of the second kind. Both maximum

likelihood and Bayesian estimators of the model parameters are derived. The posterior means and

posterior variances are obtained under the squared error loss function using Lindley’s approximation

procedure. The advantages of this approximation are shown. Monte Carlo simulations are made

under different samples sizes and different parameter values for evaluating and comparing the

proposed methods of estimation.
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Introduction. Accelerated testing ensures that specimens are exposed to elevated environmental conditions

for fixed periods of time. Overstress testing consists of running a product at higher than normal levels of some

accelerating stress(es) to shorting product life or to degrade product performance faster. Overstress constant stress

testing is the most common form of accelerated testing of specimens. According to Nelson [1], “each specimen is

tested under a constant stress level. Such testing scheme is easy and has numerous advantages.”

As indicated by Ismail [2], “accelerated life testing and partially accelerated life testing (PALT) are

frequently used in modern reliability engineering to save time and cost.”

Constant-stress PALT with type-I censoring were studied by some authors such as [3–6]. These studies had

been made based on classical methods. This paper considers Lindley technique for estimating the parameters in

constant-stress PALT. According to [7], “such an approximation has numerous valuable applications especially for

industrial fields.” Also, in this respect, Achcar [8] indicated that “the use of approximate Bayesian methods could be

a good alternative for the usual existing classical asymptotic methods used in accelerated life testing (ALT).”

There were some works on PALT in the context of Bayesian approach. For example, see Goel [9], DeGroot

and Goel [10], Abdel-Ghani [11], Ismail [12]. The objective of this article is to use the Lindley method to make a

Bayesian analysis with a squared error loss function under time-censoring CSPALT. The Bayes estimators (BEs) of

the acceleration factor and the distribution parameters are derived and compared with the maximum likelihood

estimators (MLEs) counterparts by Monte Carlo simulations.

The present paper is arranged as follows. In Section 1, the model and test method are described.

Approximate BEs of the parameters under consideration are derived in Section 2. In Section 3, BEs derived in

Section 2 are obtained numerically using the Lindley approximation and compared with the MLEs. Finally, Section 4

concludes the paper.
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1. The Model and Test Method. The probability density function (PDF) of the Pareto distribution of the

second kind is given by

f t
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t � 0, � � 0, � � 0. (1)

The survival function takes the form
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and the corresponding failure rate function is

h t
t

( ) .�
�

�

�
(3)

In a constant-stress PALT, n� units randomly selected among n test units sampled are allocated to severe

condition and the remaining are allocated to normal condition. Each test item is tested until the censoring time is

reached or the item fails.

The following assumptions are considered:

1. The lifetimes Ti , i n� �1 1, ..., ( )� of items allocated to use condition, are i.i.d. r.v.’s.

2. The lifetimes X j , j n�1, ..., � of items allocated to accelerated condition, are i.i.d r.v.’s.

3. Suppose that the lifetime of an item at accelerated condition is denoted by X , then the lifetime of this

item at use condition T is given by the relation T X� 	 .

Since the lifetimes of the test items follow Pareto distribution of the second kind, the probability density

function of an item tested at normal condition is given by (1).

The PDF under severe condition is expressed by

f x
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x � 0, � � 0, � � 0, (4)

where X T�
�

	
1

.

2. Bayesian Estimation. Here, Bayesian estimates are considered using non-informative priors via the

technique of Lindley and the squared error (SE) loss function. The non-informative prior (NIP) for each parameter be

represented by the limiting form of the appropriate natural conjugate prior.

It follows that a NIP for the acceleration factor 	 is given by

� 	 	1

1
( ) ,


�
	�1.

Also, the NIP’s for the scale parameter � and the shape parameter � are, respectively, as

� � �2

1
( ) ,


�
� � 0 and � � �3

1
( ) ,


�
� � 0. (5)

Therefore, the joint NIP of the three parameters can be expressed by

� 	 � � 	��( , , ) ( ) ,

�1

	 �1, � � 0, � � 0. (6)

Via time-censored data, any unit can be tested at one condition only until a pre-fixed censoring time � is

attained. Therefore, the observed lifetimes t t
nu

( ) ( )
...1 � � � � and x x

na
( ) ( )

...1 � � � � are ordered failure times at

normal use and accelerated conditions, respectively, where nu and na are the corresponding numbers of items
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failed in each stage. Let 
 ui and 
 aj , be indicator functions such that 
 �ui iI T� �( ) and 
 �aj jI X� �( ), where

i n�1, ..., . Then, the overall likelihood function can be expressed by
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where Lui is the likelihood function for ti at use condition, Laj is the likelihood function for x j at accelerated

condition, � is the proportion of sample units allocated to accelerated condition, and


 
ui ui� �1 and 
 
aj aj� �1 .

Using (6) and (7), the joint posterior distribution can be given by
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To obtain the posterior means and posterior variances of 	, �, and � , an approximation due to Lindley [13] is used.

Now, let � be a set of parameters { , , ..., },� � �1 2 m where m is the number of parameters, then the

posterior expectation of an arbitrary function u( )� can be asymptotically estimated by
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which is the Bayes estimator of u( )� under a squared error loss function, where �( )� is the prior distribution of �,

u u� ( ),� L L� ( )� is the likelihood function, � � �� �( ) log ( ),� � � ij are the elements of the inverse of the

asymptotic Fisher’s information matrix of 	, �, and � , and
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According to Green [14], the above posterior expectation is “very good and operational approximation for

the ratio of multi-dimension integrals.” Also, according to [7], “it has an important applied aspect.” Some

mathematical details are given at the end of this paper.

3. Monte Carlo Simulation Studies. In this section, we illustrate the use of Bayesian approach via Lindley

method for approximation of integrals to derive the marginal posterior moments of interest in the case of

constant-stress PALT under type-I censoring. The data are generated from the Pareto distribution with different

sample sizes. For each sample size, 5,000 samples are obtained randomly. The posterior means and posterior

variances of the three parameters are obtained numerically. In addition, the ML estimators and Bayes estimators are

compared with respect to the mean squared errors (MSEs) and variability.
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To assess and compare the performance of the MLEs and proposed estimators with the Lindley method, we

perform simulation comparisons with data generated via various scenarios. Four numerical examples are provided

with equal and unequal proportions of allocation for illustration. One of the considered populations is set the

combination of ( , , )	 � � at (3, 0.8, 0.5) with equal proportion of allocation � � 0.50 with results reported in Table 1.

A second combination is set at (2, 1.2, 1.5) using also equal proportion of allocation (� � 0.50) with results shown in

Table 2. While the third combination is taken as (3, 0.8, 0.5) based on unequal proportion of allocation (� � 0.30)

with numerical results reported in Table 3. Concerning the fourth scenario, the combination is (2, 1.2, 1.5) based on

proportion of allocation set at � � 0.70 with numerical results displayed in Table 4.

Also, concerning the comparison between Bayesian estimators and the likelihood ones, the results have the

same trend when unequal proportions of allocation are used. But, with larger proportion of allocation to the

accelerated condition, it is noticed that Lindley method is much better than the likelihood-based method.

4. Some Main Remarks and Further Studies. In this paper both ML and Bayes estimations of the

CSPALT model parameters have been presented using time-censored samples from Pareto distribution. The Bayes

estimators have been considered under the assumptions of squared error loss functions and non-informative priors.

Lindley’s technique has been used to obtain the Bayesian estimates numerically. It has been found that the technique

works very well even for small sample sizes. Also, it has been noted that Lindley’s technique frequently produces

posterior variances smaller than the variances of the maximum likelihood estimators. So, it gives efficient estimates.

As a future work, a Bayesian analysis via another approximation such as the Laplace approximation method or the

Markov chain Monte Carlo (MCMC) algorithm will be discussed.
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TABLE 1. Results of MLEs and Approximate BEs with Corresponding Estimated Variances and MSEs

( ,	 � 3 � � 0 8. , � � 0 5. , � � 0 50. , and � �10) Using Different Time-Censored Sample Sizes

n Parameter Method Estimate MSE Variance

25 	 ML

Bayes

3.6014

3.4712

0.0692

0.0586

0.0372

0.0295

� ML

Bayes

1.2431

0.9374

0.0396

0.0298

0.0166

0.0082

� ML

Bayes

0.8211

0.7855

0.0286

0.0214

0.0074

0.0041

50 	 ML

Bayes

3.3862

3.2281

0.0509

0.0389

0.0242

0.0148

� ML

Bayes

0.9747

0.8911

0.0274

0.0185

0.0096

0.0051

� ML

Bayes

0.6733

0.6209

0.0211

0.0150

0.0033

0.0015

75 	 ML

Bayes

3.2911

3.0766

0.0361

0.0302

0.0124

0.0043

� ML

Bayes

0.8823

0.8477

0.0201

0.0155

0.0038

0.0023

� ML

Bayes

0.5725

0.5410

0.0048

0.0019

0.0011

0.0006

100 	 ML

Bayes

3.1208

3.0241

0.0069

0.0038

0.0025

0.0023

� ML

Bayes

0.8351

0.8126

0.0054

0.0030

0.0022

0.0008

� ML

Bayes

0.5219

0.5046

0.0015

0.0013

0.0005

0.0003
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TABLE 2. Results of MLEs and Approximate BEs with Corresponding Estimated Variances and MSEs

( ,	 � 2 � �12. , � �15. , � � 0 50. , and � �10) Using Different Time-Censored Sample Sizes

n Parameter Method Estimate MSE Variance

25 	 ML

Bayes

2.5233

2.4072

0.0436

0.0369

0.0212

0.0168

� ML

Bayes

1.4371

1.3642

0.0249

0.0188

0.0095

0.0047

� ML

Bayes

1.7648

1.6427

0.0180

0.0135

0.0042

0.0023

50 	 ML

Bayes

2.3977

2.3104

0.0321

0.0245

0.0138

0.0084

� ML

Bayes

1.2894

1.2380

0.0173

0.0117

0.0055

0.0029

� ML

Bayes

1.5876

1.5392

0.0133

0.0095

0.0019

0.0009

75 	 ML

Bayes

2.1247

2.0486

0.0227

0.0192

0.0071

0.0025

� ML

Bayes

1.2432

1.2211

0.0127

0.0098

0.0022

0.0013

� ML

Bayes

1.5333

1.5104

0.0032

0.0012

0.0006

0.0002

100 	 ML

Bayes

2.0394

2.0113

0.0043

0.0024

0.0014

0.0011

� ML

Bayes

1.2117

1.2021

0.0034

0.0019

0.0013

0.0005

� ML

Bayes

1.5102

1.5002

0.0009

0.0008

0.0003

0.0001

TABLE 3. Results of MLEs and Approximate BEs with Corresponding Estimated Variances and MSEs

( ,	 � 3 � � 0 8. , � � 0 5. , � � 0 30. , and � �10) Using Different Time-Censored Sample Sizes

n Parameter Method Estimate MSE Variance

1 2 3 4 5 6

25 	 ML

Bayes

3.9125

3.5824

0.0985

0.0779

0.0502

0.0398

� ML

Bayes

1.4729

1.2366

0.0675

0.0533

0.0224

0.0111

� ML

Bayes

1.0781

1.0262

0.0492

0.0346

0.0102

0.0055

50 	 ML

Bayes

3.4521

3.3217

0.0665

0.0492

0.0327

0.0203

� ML

Bayes

1.2107

1.1638

0.0477

0.0314

0.0131

0.0069

� ML

Bayes

0.9658

0.9104

0.0311

0.0294

0.0045

0.0026



Continued Table 3

1 2 3 4 5 6

75 	 ML

Bayes

3.2982

3.2290

0.0431

0.0378

0.0167

0.0058

� ML

Bayes

1.0726

1.0179

0.0287

0.0212

0.0051

0.0031

� ML

Bayes

0.8721

0.7913

0.0113

0.0102

0.0015

0.0008

100 	 ML

Bayes

3.1876

3.1155

0.0094

0.0057

0.0034

0.0031

� ML

Bayes

0.9857

0.9274

0.0088

0.0067

0.0030

0.0011

� ML

Bayes

0.7119

0.6781

0.0052

0.0034

0.0007

0.0004

TABLE 4. Results of MLEs and Approximate BEs with Corresponding Estimated Variances and MSEs

( ,	 � 2 � �12. , � �15. , � � 0 70. , and � �10) Using Different Time-Censored Sample Sizes

n Parameter Method Estimate MSE Variance

25 	 ML

Bayes

2.4113

2.3271

0.0379

0.0321

0.0187

0.0148

� ML

Bayes

1.3570

1.3111

0.0217

0.0164

0.0084

0.0041

� ML

Bayes

1.7142

1.6281

0.0157

0.0117

0.0037

0.0021

50 	 ML

Bayes

2.2915

2.2681

0.0279

0.0213

0.0121

0.0074

� ML

Bayes

1.2270

1.1860

0.0151

0.0102

0.0048

0.0026

� ML

Bayes

1.5852

1.5472

0.0116

0.0083

0.0017

0.0008

75 	 ML

Bayes

2.0844

2.0352

0.0197

0.0167

0.0062

0.0022

� ML

Bayes

1.2130

1.1941

0.0112

0.0085

0.0019

0.0012

� ML

Bayes

1.5318

1.5009

0.0028

0.0014

0.0005

0.0002

100 	 ML

Bayes

2.0102

2.0087

0.0037

0.0021

0.0012

0.0010

� ML

Bayes

1.2024

1.2007

0.0032

0.0017

0.0011

0.0004

� ML

Bayes

1.5001

1.5000

0.0007

0.0005

0.0002

0.0001
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APPENDIX (Derivation of Posterior Means and Posterior Variances):

Here, there are three parameters in the model. That is, m � 3. Let the subscripts 1, 2, and 3 refer to 	, �, and

� , respectively. It is not easy to obtain the posterior moments analytically. Therefore, using the Lindley expansion,

the posterior mean (i.e., Bayesian estimator under squared-error loss function) and the posterior variance of 	 are

given, respectively, in the form
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Applying the same technique, the posterior mean and posterior variance of the scale parameter � take the

following form:
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Similarly, for the shape parameter � , the posterior mean and the posterior variance are given by
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for i j, , , ,�1 2 3 � ij are the elements of the inverse of the asymptotic Fisher-information matrix of the ML

estimators of 	, �, and � in the case of type-I censored data and i j, , , ,�1 2 3 is the third derivatives of the L
ijk

( )3

natural logarithm of the likelihood function in type-I censoring.

To compute the posterior means and the posterior variances of 	, �, and � derived before, both second and

third derivatives of the natural logarithm of the likelihood function in (7) must be got.

The second derivatives can be given by the following equations:
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For the third derivatives, they are given as follows:
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