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ABSTRACT

For highly reliable products, a progressive stress accelerated life test has been proposed to

obtain timely information of the product’s lifetime distribution. This article considers a

progressive stress partially accelerated life test model when the lifetime of a product under

use condition follows Weibull distribution. It is assumed that the progressive stress is

directly proportional to time. The statistical properties of the maximum likelihood (ML)
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this article through a Monte Carlo simulation study.
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Nomenclature

a, b ¼parameters of function that relates rate parameter and stress
ALTs ¼ accelerated life tests

K ¼ slope of linear progressive stress (stress rate, a some pre-assigned positive constant)
K1, K2 ¼design and high stress rates
MLEs ¼maximum likelihood estimates/estimators
MTTF ¼mean time to failure

n ¼number of test units (sample size)
na ¼number of failures at accelerated condition
nc ¼number of non-observed (censored) units
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Introduction

Accelerated life tests of a product with high reliability under

severer than design conditions involving high temperature, volt-

age, vibration, cycle rate, load, etc., are commonly used to

reduce test time and cost. Practitioners using accelerated life

tests (ALTs) generally assume a relationship between the stress

level and the corresponding life distribution according to the

failure mechanism of the particular test. This relationship is

usually referred to as the time transformation function. Inter-

ested readers can refer to Meeker and Escobar [1] and Nelson

[2–4] which are comprehensible sources for ALTs. When such

a function is not known or cannot be assumed, ALTs cannot be

applied and other tests, namely partially accelerated life tests

(PALTs), come to be used instead of ALTs. In ALTs, the test

items are run only under high stress. However, in PALTs, the

test items are run under both design- and high-stresses.

The stress can be applied in various ways. According to Yin

and Sheng [5], usually there are three kinds of stress: constant,

step, and progressive. Under constant-stress PALTs, each item

is run at either use condition or accelerated condition only.

That is, each unit is run at a steady stress (constant-stress level)

until the test is terminated or the unit fails. However, in the case

of step-stress PALTs, a test item is first run at use condition

and, if it does not fail for a pre-specified time s, then it is run at

accelerated condition until it fails or the test is terminated. Pro-

gressive stress (PS) is similar to step stress, but the stress on

items is a progressive (continuous) function. Statistical theory

for progressive stress ALTs has been studied by some authors.

For example, Mann et al. [6] and Yin and Sheng [5] discussed

this kind of testing theoretically when the underlying life distri-

butions are exponential. A statistical model for items having

exponential lives under progressive stress was proposed former

by Allen [7]. Abdel-Hamid and Al-Hussaini [8] presented pro-

gressive stress accelerated life tests under finite mixture models.

Moreover, Abdel-Hamid and Al-Hussaini [9] considered pro-

gressive stress accelerated life tests when the lifetime of an item

under use condition follows the Weibull distribution (WD)

with a scale parameter satisfying the inverse power law.

This article is concerned with discussing PALTs by PS

when the PS is directly proportional to time. That is, the stress

is a linearly increasing function in time. The objective of PALTs

is to collect more failure data in a limited time without necessar-

ily using high stresses to all test units. According to Lin and Fei

[10], testing time can be further shortened by progressive stress.

They considered a nonparametric approach to progressive stress

accelerated life tests (PSALTs). Specifically, all published works

on PALTs had been considered under the two traditional

types of stress: constant and step. For example, see Goel [11],

DeGroot and Goel [12], Bai and Chung [13], Bai et al. [14],

Ismail [15], Abdel-Hamid and Al-Hussaini [16], Aly and Ismail

[17], Ismail [18], Ismail and Aly [19], Ismail [20–23], Srivastava

and Mittal [24], Tahir [25], and Bhattacharyya and Soejoeti

[26]. Now, the present work will concentrate on PALTs

with PS. The idea of using PALTs under PS is a new one. The

maximum likelihood (ML) estimators of the model parameters

are derived and their statistical properties such as existence,

uniqueness and invariance are investigated.

The rest of this article is organized as follows: in the second

section, the test procedure and its assumptions used throughout

the article are presented and the model is also described. In the

third section, ML equations under PSPALTs are outlined to get

the ML estimates of the model parameters. The fourth section

discusses some statistical properties of the estimates. The fifth

section provides some simulation results about the performance

of the ML estimators. In the final section, we conclude the

article and present some future ideas.

Test Assumptions and Model

BASIC ASSUMPTIONS AND TEST PROCEDURE

The following assumptions are used throughout the paper in

the framework of PSPALTs:

1. For design stress, the lifetime distribution is assumed to
be Weibull distribution. Under high stresses, the lifetime
distribution is of the same type.

2. The failure mechanisms of a test unit are the same at any
level of stress.

3. Progressive stress is directly proportional to time (the
stress is a linearly increasing function of time).

4. The testing is type-i censored sample testing.

nu ¼number of failures at use condition
PALTs ¼partially accelerated life tests

PS ¼progressive stress
q ¼number of stress levels
S ¼ stress
Si ¼ stress of level i, i¼ 1, 2,…, q

SSPALTs ¼ step-stress partially accelerated life tests
ti ¼observed lifetime of unit i tested under PSPALTs

WD ¼Weibull distribution
a ¼WD shape parameter
b ¼ acceleration factor (b> 1)
e ¼max

i
ð ti�siÞ

k ¼WD rate parameter (inverse of scale parameter)
g ¼ censoring time
h ¼WD scale parameter (h¼ 1/k)
s ¼ stress change time
si ¼ time at which the stress goes from Si to Siþ1
ˆ¼ implies a maximum likelihood estimate
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5. The rate parameter of Weibull distribution (inverse of the
scale parameter) and stress are related as k¼ aSb. The
stress can be as S(t)¼Kt, where a> 0, b> 0, and K> 0.
Progressive stress during stress level i (i¼ 1, 2) is
expressed by Si(t)¼Kit, with Ki pre-assigned positive con-
stants, K1<K2. Simple progressive stress test is assumed,
i.e., we have only two stress levels which are design stress
and high stress. Let n units be tested under the progres-
sive stress Si(t)¼Kit, i¼ 1,2 for a pre-assigned censoring
time g. Often the over-stressing level at which the failure
mechanism changes can be roughly estimated. Thus, we
can avoid using failure data obtained at overstressing level
by choosing proper censoring times.

The test procedure is as follows. n test units are tested

under a linearly increasing stress condition. Each of the n test

units is first run under use condition with stress rate K1. If it

does not fail by a pre-specified times, it is run under accelerated

condition with stress rate K2 until it fails or it is censored.

THEWEIBULL DISTRIBUTION AS A FAILURE TIME MODEL

This article is concerned with two-parameter Weibull distribu-

tion, which is widely employed as a model in life testing because

of the many shapes it attains for various values of the shape pa-

rameter. It can therefore model a great variety of data and life

characteristics. The probability density function (pdf) of a two-

parameter Weibull distribution is given by:

fTðt; a; hÞ ¼
a
h

t
h

� �a�1
expf�ðt=hÞag; t > 0; a > 0; h > 0(1)

The Weibull reliability function takes the form

RðtÞ ¼ expf�ðt=hÞag(2)

and the corresponding failure rate function is given by:

hðtÞ ¼ a
h

t
h

� �a�1
(3)

Therefore, the cumulative distribution function (CDF) is

given by

FðtÞ ¼ 1� exp½�ðktÞa�; t � 0(4)

where k is the rate parameter of Weibull distribution (inverse of

the scale parameter).

Then, according to Yin and Sheng [5] the CDF with design

stress rate k1 based on assumption 5 is given by

FðtÞ ¼ 1� expf�½a kb1 tbþ1�
ag; t � 0(5)

which can be easily rewritten as

FðtÞ ¼ 1� expf�½ða kb1Þ
1=ðbþ1Þt�ðbþ1Þag; t � 0(6)

The CDF in Eq 6 under linear PS is the Weibull distribu-

tion with new rate and shape parameters:

k
^

¼ ða kb1Þ
1=ðbþ1Þ and a

^ ¼ ðbþ 1Þa

As a special case of Weibull distribution, when a¼ 1, the

exponential distribution is obtained.

Parameters Estimation

This section discusses the process of obtaining the ML estimates

of the model parameters based on PSPALTs with Type-I cen-

sored data. According to DeGroot and Goel [12], the lifetime of

a unit under step-stress PALT (SSPALT) can be written as

Y ¼ T if T � s
sþ b�1ðT�sÞ if T > s

�
(7)

where:

T¼ the lifetime of the unit under use condition,

s¼ the stress change time, and

b¼ the acceleration factor, b> 1.

This model is called the tampered random variable (TRV)

model.

As mentioned by Yin and Sheng [5], progressive stress is

similar to step stress, but the stress on specimens is a progres-

sive (continuous) function. In addition, they said that constant

stress and step stress are particular cases of progressive stress.

According to Yin and Sheng [5], for any progressive stress

s(t), there is a step stress

~sðtÞ ¼ sðsiÞ si�1 � t < si; s0 ¼ 0; i ¼ 1; 2;:::;q

where si; i ¼ 1; 2;:::;q are points in the domain of definition of

sðtÞ and represent the times at which the stress goes from Si to

Siþ1.

~sðtÞ is an approximation of sðtÞ. Thus, sðtÞ ¼ lime!0~sðtÞ
where e � maxi ð ti�siÞ. That is, the maximum time difference

between the needed time, ti, to increase the stress and the time

si at which the stress goes from Si to Siþ1 will be very small or

tends to zero.

Since the step stress ~sðtÞ becomes progressive stress sðtÞ
when e! 0, the CDF, ~FðtÞ, under step stress converges to the

CDF, FðtÞ, under progressive stress when e! 0. That is,

FðtÞ ¼ lime!0 ~FðtÞ.
Progressive stress during stress level i (i¼ 1, 2) is expressed

by Si(t)¼Kit, with Ki pre-assigned positive constants, K1<K2.

That is, based on the relationship Si(t)¼Kit, K1<K2, the units

under use condition have stress rate (K1) different from that

(K2) of the units under accelerated condition. Therefore, the pdf

of Y under PSPALTs model can be given by
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fYðtÞ ¼

0; t � 0

f1ðtÞ ¼ aa kb1 t
b a kb1 t

bþ1� �a�1
expf�½a kb1 tbþ1�

ag; 0 < t � s

f2ðtÞ ¼ aba kb2ðbðt � sÞ þ sÞb a kb2ðbðt � sÞ þ sÞbþ1
� �a�1

expf�½a kb2ðbðt � sÞ þ sÞbþ1�ag; t > s

8>>>>><
>>>>>:

(8)

where f1(t) is the pdf under use condition and f2(t) obtained by

the transformation-variable technique using f1(t) and the model

given in Eq 7 is the pdf under accelerated condition.

The observed values of the total lifetime under PSPALTs

are given by:

tð1Þ � ::: � tðnuÞ � s � tðnuþ1Þ � ::: � tðnuþnaÞ � g

where:

nu and na¼ the number of items failed at use and acceler-

ated conditions, respectively, and

tðiÞ ¼ the order statistic realization of ti based on i.i.d ran-

dom variables. Let d1i and d2i be two indicator functions such

that d1i : I (ti� s) and d2i : I (s< ti� g), i¼ 1,…, n.

Since the total lifetimes Y1,…, Yn of n units are

i.i.d r.v.’s, then the total likelihood function for them is given

by:

Lða;b;a;bÞ /
Yn
i¼1
½aakb1 tbi a kb1 t

bþ1
i

� �a�1
expf�½akb1 tbþ1i �

ag�d1i

� ½abakb2ðbðti� sÞþ sÞb akb2ðbðti�sÞþ sÞbþ1
� �a�1

� expf�½akb2ðbðti� sÞþ sÞbþ1�ag�d2i

� ½expf�½akb2ðbðg� sÞþ sÞbþ1�ag��d1i �d2i

(9)

where �d1i ¼ 1� d1i and �d2i ¼ 1� d2i.

The natural logarithm of the above likelihood function is

given by

ln L / ðnu þ naÞln aþ ðnu þ naÞalnaþ naln b

þ ðnu ln k1þ na ln k2Þabþ ððbþ 1Þa� 1Þ

�
Xnu
i¼1

ln ti þ
Xna
i¼1

lnðbðti � sÞ þ sÞ
" #

� aa kba1
Xnu
i¼1

tðbþ1Þai þ kba2
Xna
i¼1
ðbðti � sÞ þ sÞðbþ1Þa

" #

� aakba2 ncðbðg�sÞ þ sÞðbþ1Þa
(10)

To obtain the MLEs of model parameters, the required der-

ivations are given in Appendix.

Properties of Estimators

When a ¼ 1

The ML estimates of the model parameters for a ¼ 1

(the exponential distribution case) have the following

properties.

b̂ AND KI, I¼ 1, 2 ARE RELATED BY TEST DATA

From the maximum likelihood equations presented in

Appendix, we have

ðnu þ naÞ þ
Xnu
i¼1

ln ti þ
Xna
i¼1

lnwi

 !

�
ðnu þ naÞ

Xnu
i¼1

tðb̂þ1Þi lnti þ
Xna
i¼1

wðb̂þ1Þi lnwi

" #

Xnu
i¼1

tðb̂þ1Þi þ
Xna
i¼1

wðb̂þ1Þi

 ! ¼ 0

(11)

where wi ¼ bðti � sÞ þ s.

b̂ can be found without Ki, i¼ 1, 2. That is, b̂ is indirectly

related to Ki, i¼ 1, 2 by test data.

UNIQUENESS OF b̂

Let

f �
Xnu
i¼1

ln ti þ
Xna
i¼1

lnwi(12)

and

gðxÞ �
ðnu þ naÞ

�Xnu
i¼1

txi ln ti þ
Xna
i¼1

wx
i lnwi

�
	Xnu

i¼1
txi þ

Xna
i¼1

wx
i


 � ðnu þ naÞ
x

(13)
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then,

dgðxÞ
dx
¼
ðnu þ naÞ

�Xnu
i¼1

txi ðlntiÞ
2 þ

Xna
i¼1

wx
i ðlnwiÞ

2
�

	Xnu
i¼1

txi þ
Xna
i¼1

wx
i


 �
ðnu þ naÞ

�	Xnu
i¼1

txi ln ti


2

þ
	Xna

i¼1
wx
i lnwi


2�
	Xnu

i¼1
txi þ

Xna
i¼1

wx
i


2 þ ðnu þ naÞ
x2

¼
ðnu þ naÞ

�Xnu
i¼1

Xnu
j¼1

txi t
x
j ðln ti � ln tjÞ2 þ

Xna
i¼1

Xna
j¼1

wx
i w

x
j ðlnwi � lnwjÞ

2
�

	Xnu
i¼1

txi þ
Xna
i¼1

wx
i


2 þ ðnu þ naÞ
x2

; i < j

Since ti > 0 ði ¼ 1; 2; :::; nu þ naÞ, ðdgðxÞ=dxÞ > 0.

That is, gðxÞ is a strictly monotone increasing function. In

addition, it is noted that b̂ > 0 and if b̂ is the solution of Eq 11,

then gðb̂þ 1Þ ¼ f . Therefore, with the strict monotonicity and

continuity of gðxÞ in [1,1), we conclude that b̂ determined by

Eq 11 is unique. Similarly, we can conclude that b̂ is also
unique.

INVARIANCE OF b̂

Let xi ¼ ðti=fÞ, where f is an arbitrary constant. Then, substi-

tuting fxi for ti into Eq 11, we can derive

ðnu þ naÞ þ
	Xnu

i¼1
lnxi þ

Xna
i¼1

lnui



þ ðnu þ naÞln f�

ðnu þ naÞ
�Xnu

i¼1
xðb̂þ1Þi fðb̂þ1Þðlnxi þ ln fÞ þ

Xna
i¼1

uðb̂þ1Þi fðb̂þ1Þðlnui þ ln fÞ
�

	Xnu
i¼1

xðb̂þ1Þi fðb̂þ1Þ þ
Xna
i¼1

uðb̂þ1Þi fðb̂þ1Þ

 ¼ 0

where ui ¼ bðxi � sÞ þ s.

That is,

ðnu þ naÞ þ
	Xnu

i¼1
lnxi þ

Xna
i¼1

lnui



�
ðnu þ naÞ

�Xnu
i¼1

xðb̂þ1Þi lnxi þ
Xna
i¼1

uðb̂þ1Þi lnui

�
	Xnu

i¼1
xðb̂þ1Þi þ

Xna
i¼1

uðb̂þ1Þi


 ¼ 0(14)

It is noted that Eqs 11 and 14 have the same form. Equation 14 does not include f. This means that if the test data are divided (or multi-

plied) by an arbitrary constant,b̂ does not change.

EXISTENCE b̂

By definition of gðxÞ

gð1Þ � f ¼
ðnu þ naÞ

�Xnu
i¼1

tiln ti þ
Xna
i¼1

wilnwi

�
Xnu
i¼1

ti þ
Xna
i¼1

wi

� ðnu þ naÞ �
Xnu
j¼1

ln tj �
Xna
j¼1

lnwj

¼
��Xnu

i¼1

Xnu
j¼1
ðln ti � ln tjÞ�ti þ

Xna
i¼1

Xna
j¼1
ðlnwi � lnwjÞ�wi� � ðnu þ naÞ

�Xnu
i¼1

ti þ
Xna
i¼1

wi

����Xnu
i¼1

ti þ
Xna
i¼1

wi

�

¼
��Xnu

i¼1

Xnu
j¼1
ðln ti � ln tjÞ�½ti � tj� þ

Xna
i¼1

Xna
j¼1
ðlnwi � lnwjÞ � ½wi � wj�

�
� ðnu þ naÞ

�
�Xnu

i¼1
ti þ

Xna
i¼1

wi

����Xnu
i¼1

ti þ
Xna
i¼1

wi

�
; i < j
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If �Xnu
i¼1

Xnu
j¼1
ðln ti � ln tjÞ:½ti � tj� þ

Xna
i¼1

Xna
j¼1
ðlnwi � lnwjÞ

� ½wi � wj�
�
� ðnu þ naÞ

�Xnu
i¼1

ti þ
Xna
i¼1

wi

�
; i < j

(15)

then
gð1Þ � f

When gð1Þ � f , it is certain that gðxÞ> f , (x> 1) according to

the strict monotonically and continuity of gðxÞ in [1, þ1), i.e.,

Eq 11 cannot provide solution b̂< 0 when Eq 15 is true. Inver-

sely, if

�Xnu
i¼1

Xnu
j¼1
ðln ti � ln tjÞ � ½ti � tj� þ

Xna
i¼1

Xna
j¼1
ðlnwi � lnwjÞ

� ½wi � wj�� < ðnu þ naÞ
�Xnu

i¼1
ti þ

Xna
i¼1

wi

�
; i < j

then

gð1Þ < f

But

tðnuþnaÞ � ti; i ¼ 1; 2; 3; :::; nu þ na � 1

and there is at least one strict inequality,

lim
x�!þ1

gðxÞ ¼ ðnu þ naÞ ln tðnuþnaÞ > f

Thus, according to the continuity of gðxÞ on [1þ n, c), where n

is a small constant and c is a large constant such that

gð1þ nÞ< f and gðcÞ> f , there exists an x	 2 ½1þn, c], which

satisfies gðx	Þ ¼ f and b̂¼ x	 � 1 is the solution of Eq 11.

Moreover, the necessary and sufficient condition for Eq 14

providing solution b̂> 0 is:

�Xnu
i¼1

Xnu
j¼1
ðln ti � ln tjÞ�½ti � tj� þ

Xna
i¼1

Xna
j¼1
ðlnwi � lnwjÞ

� ½wi � wj�� < ðnu þ naÞ
�Xnu

i¼1
ti þ

Xna
i¼1

wi

�
; i < j

Data Analysis

In this section, we provide a numerical example and simulation

studies are also made to demonstrate the use of the proposed

method in this article as shown from the following two

subsections.

AN ILLUSTRATIVE EXAMPLE

An illustrative example has been presented to clarify the practi-

cal usage of PSPALTs:

To illustrate the use of the proposed methodology in this

article a simulated data set from PSPALTs model assuming Wei-

bull distribution with Type-I censoring is investigated as follows.

PSPALTs model assuming Weibull distribution with Type-

I censoring is run to estimate both the life distribution parame-

ters and the acceleration factor. We choose n¼ 40, a¼ 1.2,

b¼ 1.8, a¼ 1.5, b¼ 3.9 given k1¼ 3, k2¼ 9, with a combination

of (s, g) set to be (5,8). The number of failures observed at use

and accelerated conditions are nu¼ 8 and na¼ 23, respectively

with censored items nc¼ 9. The MLEs of the model parameters

are â¼ 0.9231, b̂¼ 1.2189, â¼ 1.4352, and b̂¼ 3.5659. More-

over, the biases and MSEs of the MLEs of the model parameters

a, b, a, and b are (0.0063, 0.0082, 0.0028, 0.0053) and (0.3020,

0.2885, 0.2356, 0.2933), respectively.

In practice, PSPALTs are easier to implement and have

many advantages include:

(1) Time saving: PSPALTs can substantially shorten the du-
ration of the test without affecting the accuracy of life-
time distribution estimates.

(2) Economical: Testing units under PSPALTs can reduce
the costs of experiments because not all test units are
run at higher stresses.

(3) Adaptable: PSPALTs are flexible test strategy, especially
for new products when one presumably has little infor-
mation regarding appropriate test stresses. In such situa-
tions, it may not be easy for the experimenter to
determine suitable test stress levels. In simple PALTs,
the second stress level, as well as the transition time,
could be dynamically adjusted as failure information is
being gathered under the first stress level.

SOME SIMULATION RESULTS

In this section simulation studies are conducted to discuss the

performance of the MLEs in terms of their biases and mean

square errors (MSEs) for different choices of a, b, a, b, s, K1,K2,

and g values.

The simulation study is carried out according to the follow-

ing algorithm:

1. Specify the values of n,s K1, K2, and g
2. Specify the values of the parameters a, b, a, and b.
3. Generate a random sample of size n from the random

variable Y given by Eq 7 and sort it. The Weibull random
variable can be easily generated. For example, if U repre-
sents a uniform random variable from [0,1], then
Y ¼ ½�½ln ð1� UÞ�1=a=a kb1�

1=ðbþ1Þ
has Weibull distribution

with pdf f1ðtÞ as given by Eq 8 if t � s. However,
if t > s then Y¼ sþb�1f½�½lnð1�UÞ�1=a=akb2�

1=ðbþ1Þ
�sg

has Weibull distribution with pdf f2ðtÞ as given by Eq 8.
4. Use the model given by Eq 8 to generate Type-I censored

data for a given n,s, K1,K2, g, a, b, a, and b.
5. Use the Type-I censored data to compute the MLEs of the

model parameters. Newton–Raphson method is applied
for solving the nonlinear equations given by Eqs A2–A4
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to obtain the MLEs of the parameters b, a, and b. Then
one can easily obtain the value of a using Eq A5. Accord-
ingly, k is determined from the relation k¼ aSb to obtain
the estimated value of the parameter h, where h¼ 1/ k.

6. Replicate the steps 3–5 10 000 times.
7. Compute the average values of biases and MSEs associ-

ated with the MLEs of the parameters.
8. Steps 1–7 are done with different values of n,s, K1,K2, g,

a, b, a, and b.
9. Conducting the above algorithm, the average values of

biases and MSEs are obtained using 10 000 replications to

avoid randomness. The results are reported in Tables 1

and 2 based on different values of n, s, K1, K2, g, a, b, a,
and b to investigate the performance of the MLEs of the
model parameters.

From Tables 1 and 2, the following observations can be

made:

1. For fixed sand g, the MSEs decrease as n increases.
2. For fixed sand n, the MSEs decrease as g increases.
3. For fixed g and n, the MSEs are to be larger when s is get-

ting to be large and a> 1.

TABLE 2 Average values of the MLEs, biases (between brackets) and MSEs, when a, b, a, and b set at 1.2, 1.8, 0.6, and 3.9, respectively, with K1¼ 3 and

K2¼9.

n Parameters (s, g) (5, 8) (7, 8) (5, 11)

30 a 0.8558 (0.0071) 0.2981 0.8887 (0.0079) 0.3812 0.8403 (0.0061) 0.2272

b 1.1404 (0.0042) 0.2774 1.1842 (0.0053) 0.3655 1.1196 (0.0034) 0.2134

a 0.4639 (0.0030) 0.2406 0.5202 (0.0039) 0.3108 0.5273 (0.0023) 0.1863

b 3.6254 (0.0055) 0.2910 3.7649 (0.0073) 0.3865 3.5596 (0.0041) 0.2308

50 a 1.0642 (0.0051) 0.2732 1.1052 (0.0064) 0.3750 1.0449 (0.0039) 0.2124

b 1.3949 (0.0034) 0.2644 1.4486 (0.0047) 0.3599 1.3696 (0.0028) 0.1489

a 0.5213 (0.0020) 0.1987 0.5798 (0.0027) 0.2432 0.5437 (0.0014) 0.1107

b 3.7917 (0.0045) 0.2635 3.9376 (0.0052) 0.3604 3.7228 (0.0033) 0.1828

75 a 1.2018 (0.0038) 0.1654 1.2480 (0.0046) 0.2217 1.1810 (0.0032) 0.1141

b 1.6820 (0.0031) 0.1361 1.7467 (0.0041) 0.1946 1.6514 (0.0025) 0.0875

a 0.5403 (0.0012) 0.1104 0.5996 (0.0020) 0.1487 0.5624 (0.0009) 0.0551

b 3.9493 (0.0024) 0.1472 4.1012 (0.0035) 0.2106 3.8775 (0.0021) 0.0867

100 a 1.2564 (0.0017) 0.0811 1.3047 (0.0026) 0.1165 1.2336 (0.0013) 0.0598

b 1.8608 (0.0015) 0.0786 1.9323 (0.0024) 0.1129 1.8270 (0.0011) 0.0494

a 0.5869 (0.0007) 0.0517 0.6271 (0.0014) 0.0688 0.5984 (0.0005) 0.0354

b 4.0485 (0.0021) 0.0782 4.2042 (0.0031) 0.1061 3.9749 (0.0013) 0.0527

TABLE 1 Average values of the MLEs, biases (between brackets) and MSEs, when a, b, a, and b set at 1.2, 1.8, 1.5, and 3.9, respectively, with K1¼ 3 and

K2¼9.

n Parameters (s, g) (5, 8) (7, 8) (5, 11)

30 a 0.8229 (0.0073) 0.3076 0.8915 (0.0100) 0.4091 0.8311 (0.0063) 0.2676

b 1.0965 (0.0045) 0.2982 1.1879 (0.0062) 0.3966 1.1075 (0.0037) 0.2594

a 1.4076 (0.0032) 0.2504 1.5249 (0.0044) 0.3331 1.4217 (0.0026) 0.2179

b 3.4860 (0.0058) 0.3035 3.7765 (0.0080) 0.4036 3.5209 (0.0045) 0.2640

50 a 1.0233 (0.0053) 0.2964 1.1086 (0.0073) 0.3942 1.0335 (0.0042) 0.2425

b 1.3413 (0.0037) 0.2787 1.4531 (0.0051) 0.3706 1.3547 (0.0031) 0.1746

a 1.4628 (0.0023) 0.2207 1.5847 (0.0031) 0.2669 1.4774 (0.0018) 0.1563

b 3.6459 (0.0047) 0.2831 3.9497 (0.0065) 0.3765 3.6824 (0.0038) 0.2025

75 a 1.1556 (0.0041) 0.1753 1.2519 (0.0056) 0.2331 1.1672 (0.0035) 0.1355

b 1.6173 (0.0034) 0.1557 1.7521 (0.0047) 0.2071 1.6335 (0.0029) 0.1178

a 1.4811 (0.0016) 0.1355 1.6045 (0.0022) 0.1801 1.4959 (0.0012) 0.0866

b 3.7974 (0.0027) 0.1682 4.1139 (0.0038) 0.2237 3.8354 (0.0023) 0.1163

100 a 1.2081 (0.0020) 0.0996 1.3088 (0.0028) 0.1325 1.2001 (0.0017) 0.0787

b 1.7892 (0.0018) 0.0905 1.9383 (0.0025) 0.1204 1.8006 (0.0015) 0.0679

a 1.5066 (0.0010) 0.0781 1.6322 (0.0015) 0.1039 1.5010 (0.0008) 0.0535

b 3.8928 (0.0024) 0.0959 4.2172 (0.0033) 0.1275 3.9003 (0.0019) 0.0782
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4. For fixed g and n, the MSEs are to be slightly larger
whensis getting to be large and a< 1.

5. It is observed that the MLEs of the model parameters are
very close to the true values as n increases.

The same pattern is observed for the biases. That is, under

the proposed model developed in this paper, we have obtained

good estimates for the parameters of interest.

Conclusion

In this paper, we have studied PALTs with PS when the PS is

directly proportional to time. That is, the stress is a linearly

increasing function with time. The PS test pattern is more effec-

tive in time and money compared with constant- or step-stress.

For highly reliable products, PSPALTs have been proposed to

obtain timely information of the product’s lifetime distribution.

We have discussed some statistical properties of the MLEs

such as uniqueness, invariance, and existence under PSPALTs

assuming the Weibull distribution. As a future work, the pro-

gressive stress testing wherein the stress on every item is

increased continuously in a non-linear pattern with time will be

considered.
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Appendix

The MLEs of a, b, a, and b can be obtained by solving the fol-

lowing likelihood equations:

@ ln L
@a
¼ ðnu þ naÞa

a
� aa�1a

�
kba1
Xnu
i¼1

tðbþ1Þai þ kba2
Xna
i¼1

wðbþ1Þai

þ nck
ba
2 wðbþ1Þag

�
¼ 0

(A1)

where wi ¼ bðti � sÞ þ s and wg ¼ bðg� sÞ þ s

@ lnL
@b
¼ ðnuln k1þnaln k2Þaþ a

�Xnu
i¼1

ln ti þ
Xna
i¼1

lnwi

�

� aaa

�	
kba1 ðln k1Þ

Xnu
i¼1

tðbþ1Þai þ kba2 ðln k2Þ
Xna
i¼1

wðbþ1Þai




þ
Xnu
i¼1

tðbþ1Þai ln ti þ
Xna
i¼1

wðbþ1Þai lnwi

þwðbþ1Þag ncðln k2þlnwgÞ
�
¼ 0

(A2)

@ ln L
@a
¼ ðnuln k1þnaln k2Þð1=aþ ln aþ bÞ þ ðbþ 1Þ�Xnu

i¼1
ln ti þ

Xna
i¼1

lnwi

�
� aa

�
ðln aþ bÞ

�
kba1 ðln k1Þ

�
Xnu
i¼1

tðbþ1Þai þ kba2 ðln k2Þ
Xna
i¼1

wðbþ1Þai

�

þ ðbþ 1Þ
�Xnu

i¼1
tðbþ1Þai ln ti þ

Xna
i¼1

wðbþ1Þai lnwi

�

þ nc w
ðbþ1Þa
g ½ln aþ b ln k2þðbþ 1Þ lnwg�g ¼ 0

(A3)

@ ln L
@b
¼ na

b
þ ððbþ 1Þa� 1Þ

Xna
i¼1

ðti�sÞ
wi

� aaðbþ 1Þa
�
kba2
Xna
i¼1
ðti � sÞwðbþ1Þa�1i

þ nck
ba
2 ðg� sÞwðbþ1Þa�1g

�
¼ 0

(A4)

From Eq A1, the MLE of a can be obtained as

â ¼ nu þ na�
kba1
Xnu
i¼1

tðb̂þ1Þâi þ kba2
Xna
i¼1

wðb̂þ1Þâi þ nck
ba
2 wðb̂þ1Þâg

�
0
BBB@

1
CCCA

1=â

(A5)

When ais known, one can eliminate Eq A3 and can put the known

values of a and ain Eqs A2 and A4. Then, solve for b and b.
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