Structural Behaviour of Clay Brick Lime Mortar Masonry Walls Under Lateral Cyclic Loading in Dry and Wet Conditions

Citation:
Elghazouli, A. Y., D. V. Bompa, S. A. Mourad, and A. Elyamani, "Structural Behaviour of Clay Brick Lime Mortar Masonry Walls Under Lateral Cyclic Loading in Dry and Wet Conditions", Protection of Historical Constructions, Cham, Springer International Publishing, pp. 164 - 174, 2022.

Date Presented:

2022

Abstract:

This paper examines the experimental structural response of clay brick lime mortar masonry walls in wet and ambient-dry conditions. The properties of fired-clay bricks and hydraulic lime-mortar materials are selected to resemble those of existing heritage masonry structures in Historic Cairo. The investigation includes tests on square panels under diagonal compression, and large-scale walls subjected to gravity loading and in-plane lateral cyclic displacements. In addition to the conditioning type, the effectiveness of strengthening with helical bars in horizontal bed joints is also investigated. Implications of embedding helical bars in lime mortar as well as the provision of end anchorages are assessed. The complete load-deformation response of the large-scale members is also evaluated, including the main behavioural characteristics and failure modes. The results show that moisture has a notable effect on the main mechanical properties and overall structural response of such masonry components. For the panels subjected to diagonal compression, the strength reduction under wet conditions is shown to be more than 40% compared to the dry counterparts. For the large-scale walls, subjected to combined lateral loading and precompression, this reduction is significantly lower but can exceed 10%. It is also shown that the provision of helical bars can, depending on their end anchorage and arrangement, double the diagonal tension strength of masonry and offset the adverse effects occurring due to moisture.

Notes:

n/a

Tourism