Publications

Export 36 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Saad, D. A., M. M. Hassan, A. Elyamani, A. Mamdouh, S. Mourad, and T. Hegazy, "Prioritization of Heritage Buildings in Historic Cairo for Restoration Funding", International Journal of Advances in Structural and Geotechnical Engineering, vol. 07, issue 01, pp. 20-28, 2023. asge_volume_07_issue_01_pages_20-28_1.pdf
Elyamani, A., P. Roca, O. Caselles, and J. Clapes, "Seismic safety assessment of historical structures using updated numerical models: The case of Mallorca cathedral in Spain", Engineering Failure Analysis, issue 74, pp. 54-79, 2017. AbstractWebsite

The paper presents an integrated approach aimed at assessing the seismic safety of Mallorca cathedral. This cathedral is an extraordinary historical construction dating back to the middle ages. The experimental modal parameters of the cathedral were identified using Ambient Vibration Testing (AVT). The cathedral numerical model was updated using the identified modal parameters. This updated model was then used to study the seismic response of the cathedral using non-linear static (pushover) analysis. A sensitively analysis was carried out to reveal the dependency of the seismic capacity on the input materials properties. To assess the seismic performance and the safety of the cathedral, the N2 method was employed. It was found that the cathedral is safe when subjected to the earthquakes expected in Mallorca Island.

Hassan, M. M., A. Elyamani, and S. A. Mourad, "Seismic vulnerability assessment of buildings: case study of Al Khalifa district, Fatimid Cairo", SN Applied Sciences, vol. 4, issue 11, pp. 310, 2022. AbstractWebsite

This work intends to provide seismic vulnerability analysis for a building stock in Al Khalifa District, Fatimid Cairo while focusing on the historic buildings in the area. The work represents part of an interdisciplinary study targeting the management and conservation of a UNESCO World Heritage Site. The project inspects several aspects including behavior of masonry walls, structural health monitoring of selected structures, conservation studies, in addition to influence of rising ground water. In the current study, seismicity of Egypt generally and Cairo specifically is reviewed. Afterwards, large-scale seismic vulnerability is adopted to calculate the vulnerability index for buildings within the study area. Data are collected through extensive on-site surveys for more than one hundred buildings. Observed typologies are listed alongside possible mechanisms of failure. Egypt has moderate seismic hazard; however, many buildings are prone to damage due to inadequate seismic design. This leads to retrofitting requirements to reduce seismic vulnerability and adhere to imposed seismic requirements in design codes. The study is intended to understand seismic risk of buildings within study area as part of a comprehensive study. Developed vulnerability map show that many buildings are prone to damage during seismic events.

Elghazouli, A. Y., D. V. Bompa, S. A. Mourad, and A. Elyamani, "Ultimate in-plane shear behaviour of clay brick masonry elements strengthened with TRM overlays", Bulletin of Earthquake Engineering, pp. 1-43, 2023. Abstracts10518-023-01775-y.pdfWebsite

This paper studies the response of unreinforced masonry (URM) members made of hydraulic lime mortar and fired clay bricks, commonly found in heritage structures, strengthened with textile reinforced mortar (TRM) overlays. The investigation includes URM and TRM-strengthened diagonal compression tests on square panels, and relatively large-scale wall specimens subjected to combined gravity and lateral cyclic loads. Complementary compression, tension, and interface material tests are also carried out. The diagonal panel tests show that the TRM effectiveness depends in a non-proportional manner on the overlays, render thickness, and substrate strength. The enhancement in stiffness, strength, and ultimate shear strain, using one to four mesh layers on each side, is shown to vary in the range of 49–132%, 102–536%, and 300–556% respectively. It is shown that strut crushing typically governs the response of such low-strength URM masonry elements confined by TRM overlays. The cyclic tests on the comparatively larger walls show that the TRM is effective, shifting the response from URM diagonal tension to rocking, and enhancing the stiffness, strength, and ultimate drift capacity by more than 160%, 30%, and 130%, respectively. It is shown that analytical assessment methods for predicting the response of TRM-strengthened and URM members in terms of stiffness, strength and load-deformation can be reliably adapted. The cumulative contribution of the URM and TRM components, in conjunction with a suitable fibre textile strain, is also found to offer an improved prediction of the shear strength compared to codified procedures. The findings enable the evaluation and improvement of analytical models for determining the main inelastic response parameters of TRM-strengthened masonry and provide information for validating future detailed nonlinear numerical simulations.

Thesis
Elyamani, A., Integrated monitoring and structural analysis strategies for the study of large historical construction. Application to Mallorca cathedral, , Barcelona, Technical University of Catalonia, 2015. Abstract

Historical structures are vital to the realization of how the technical, artistic, and scientific skills of the human kind have developed over time. These structures are one of the motors of the tourism industry, and therefore, the studies related to their conservation do not only have social benefits but as well economical ones. It is unfortunately that many countries rich with valuable architectural heritage are characterized by high seismic activity, Italy and Turkey are obvious examples. Due to earthquakes, many invaluable historical structures have been lost forever. Consequently, there is an increasing need for more research on the topic of seismic assessment and protection of this class of buildings. This work contributes to the methodological approaches adopted for the seismic assessment of historical structures. In many cases, due to the lack of knowledge about the assessed historical structure, it is essential to combine many investigation activities in such approaches. The aim is to minimize any possibly required seismic strengthening interventions (minimum intervention concept) by increasing the level of knowledge about the structure. In the current research, the employed experimental investigation activities are the dynamic identification tests and the dynamic monitoring. Most approaches for dynamic monitoring are based on the use of a threshold limit which is used to trigger the system when the parameters measured surpass the limit. Here, an alternative is considered that consists of a continuous monitoring system based on the permanent measurement of the ambient vibration. A thermography monitoring is used as a complementary system for the measurement of temperature. The integration between the dynamic investigation and the numerical modeling is essential and it includes two main features. On one hand, tentative structural analyses are carried out to identify important aspects of the dynamic tests and monitoring strategies such as critical points of the structure where to place the sensors. On the other hand, the results of the dynamic investigation are used to perform model updating until obtaining a satisfactory structural model adequately matching the measured dynamic properties of the structure. Once the structural model is validated, it is used to carry out the seismic assessment of the structure. This assessment is performed using different methods, to cross check the results, including the pushover analysis, the kinematic limit analysis and the nonlinear dynamic analysis. It is then possible with these assessments to identify the seismic behavior of the structure. Using the N2 method, the evaluation of the structural performance and its safety are carried out. Hence, the needs for any possible seismic strengthening are revealed, keeping in mind, the respect to the "minimum intervention" concept. As an application, the cathedral of Mallorca (Spain) is taken as a case study. This structure is one of the largest cathedrals built during the Middle Age. For each of the previously mentioned research steps, the followed criteria and the experience gained are transferred into recommended methodological approaches to be applied to other historical structures. Finally, the integration of these partial steps into one integrated methodology is discussed.

Elyamani, A., Wind and earthquake analysis of spire of cimborio of Barcelona cathedral, , Barcelona, Spain, Technical university of Catalonia, 2009. Abstract

Barcelona Cathedral is one of the most important monuments not only in Spain but also all over the world. The construction of the Gothic cathedral started in 1298 under King Jaume II and in 1460 the main building was completed. The two architects Josep Oriol Mestres and August Font i Carreras completed the construction of the gothic façade in 1889 and the central spire in 1913, following the same design previously proposed by the French architect Charles Galters in 1408. The central spire reaches a height of 90 m over ground level which makes it very vulnerable when subjected to lateral loads like wind and earthquakes. Being finished at the beginning of the 20th century (when the concept of reinforced concrete was being widely spread) gave the builders the chance to centrally reinforce all masonry beams of the spire with steel ties and nowadays these steel ties are facing very severe problems due to corrosion. A complete project for restoration of the spire is being executed nowadays in which a complete dismantling and reconstruction will be carried out. The steel ties will be replaced with titanium ones in order to eliminate the corrosion problem. In order to understand wind and seismic performance of the spire and the role and strength contributions of the steel ties, the different applied loads on the spire which are self weight, wind loads and earthquake loads have been estimated ,then a numerical model of the spire has been created and analyzed using the finite element program DIANA. First a linear elastic analysis under the effect of spire self weight then a combination of spire self weight and wind loads and finally a combination of spire self weight and earthquake loads. The high tensile stresses in masonry beams under the effect of the combination of spire self weight and wind loads and the combination of spire self weight and earthquake loads meant that linear elastic analysis wasn't enough to describe the structure behavior and a nonlinear analysis was essential. A nonlinear analysis under the effect of spire self weight (using three different constitutive models to describe masonry nonlinear behavior) was investigated and it revealed an elevated safety margin as the spire can carry more than ten times its self weight. Then to investigate the seismic performance of the spire a nonlinear static pushover analysis (using two different constitutive models) has been carried out.As a conclusion of this study the steel ties are highly needed to carry the tensile stresses resulted from seismic actions and the spire would be able to resist a maximum base shear of 420 KN (16% of the spire self weight).

Tourism