Anticancer activities, molecular docking and structure–activity relationship of novel synthesized 4H-chromene, and 5H-chromeno[2,3-d]pyrimidine candidates

Citation:
Halawa, A. H., M. A. H. M. O. U. D. M. ELAASSER, A. M. El Kerdawy, A. M. A. I. Abd El-Hady, H. A. Emam, and A. M. El-Agrody, "Anticancer activities, molecular docking and structure–activity relationship of novel synthesized 4H-chromene, and 5H-chromeno[2,3-d]pyrimidine candidates", Medicinal Chemistry Research, vol. 26, no. 10, pp. 2624–2638, Oct, 2017.

Abstract:

In the present study, a series of 4H-chromene and 5H-chromeno[2,3-d]pyrimidine derivatives was synthesized and evaluated as potential cytotoxic agents. The cytotoxic activities of the target compounds were evaluated against four cancer cell lines MCF-7, HCT-116, HepG-2, and A549 in comparison with vinblastine and colchicine as reference drugs. We explored the structure–activity relationship of 4H-chromenes with modification at the 2-,4- or 7-position, and fused pyrimidine ring at 2,3-position. Most of the screened compounds showed marginal antitumor activity against the different cell lines in comparison to the standard drugs. The structure–activity relationship study revealed that the antitumor activity of the synthesized compounds was significantly affected by the lipophilicity of the substituent at the 2-,4- or 7-position for the 4H-chromenes, and 5,8-position or fused pyrimidine ring at 2,3-positions for 5H-chromeno[2,3-d]pyrimidines. Structure–activity relationship was elaborated with the help of molecular docking studies. The structures of the synthesized compounds were established on the basis of the spectral data, infrared, proton nuclear magnetic resonance, 13-Carbon nuclear magnetic resonance and mass spectroscopic data.

Notes:

n/a

Related External Link