
Topic 4: Process Mining

Mathias Weske 2009/10 POIS2 - 2

Evaluation

Design &

Analysis

Configuration

Enactment

Design:
Business Process

Identification and

Modeling

Analysis:
Validation

Simulation

Verification

Configuration:
System Selection

Implementation

Test and Deployment

Enactment:
Operation

Monitoring

Maintenance

Evaluation:
Process Mining

Business Activity Monitoring

Administration:
User, Software and

Process Admin

from M. Weske: Business Process Management, © Springer-Verlag Berlin Heidelberg 2007

Mathias Weske 2009/10 POIS2 - 3

Structure

• Motivation

• Mining algorithms and their properties

- α – Algorithm

- α+(+) – Algorithm

- Noise in execution logs

- Outlook on other approaches

• Evaluation of created process models

- Over-fitting / Under-fitting of Process models

- Dimensions for the evaluation

- Fitness Metric

- Precision Metric

[Slides partially taken from Wil van der Aalst]

Mathias Weske 2009/10 POIS2 - 4

Motivation

• So far

- Consideration of process models

- Creation of process models as a

creative act

• In this topic/chapter

- Consideration of information that arose

during operations of companies

- So called: logs

• Log

- Sequential series of log entries, record

the events in the company

Mathias Weske 2009/10 POIS2 - 5

Log Entries

• Exemplery log entries

- Invoice check for invoice number 4567 completed on 12.11.2010

at 9:19:57

- Function StoreCustomerData(„Müller“, c1987, „Bad Bentheim“)

executed on 12.11.2010 at 9:22:24

- Sending invoice for invoice number 4567 completed on

12.11.2010 at 9:23:18

- Function ContactCustomer(c1987, PromoMailing) executed on

12.11.2010 at 9:24:10

- Function StoreCustomerData(„Miller“, c1988, „Osnabrück“)

executed on 12.11.2010 at 9:26:08

- Invoice check for invoice number 4568 completed on 12.11.2010

at 9:26:38

- Function ContactCustomer(c1988, PromoMailing) executed on

12.11.2010 at 9:27:32

Mathias Weske 2009/10 POIS2 - 6

Logs Conceal Information

• Logs hold valuable information that they can answer

questions

- How many process instances were enacted?

- Are there any recurring patterns in the execution of activities?

- Can process models be derived from the data?

- Which paths in these models are taken as frequently?

- Are there any paths that were never executed?

• Process Mining

- Area of research that focuses on these issues

- Important parts: Process Discovery and Process Conformance

Mathias Weske 2009/10 POIS2 - 7

Motivation

• Process Discovery

- A method to detect process models based on execution logs

- Input: execution logs, ordered lists of activities, with a time stamp

and caseID

- Output: a process model that could have generated the execution

log

• Hint

- CaseID is frequently not directly present in the data and must be

determined by pre-processing!

Mathias Weske 2009/10 POIS2 - 8

Motivation

• Process Conformance

- Method for analyzing the relationships of logs and process models

• Input: Execution logs and process model(s)

• Output: Knowledge about their relationships (fitting)

• Hint

- Process mining is versatile because many systems generate

execution logs, not only Process-oriented Information Systems!

- In principle, not only IT systems are used, also similar information

collected!

- Examples: Laboratory notebook or logbook

Mathias Weske 2009/10 POIS2 - 9

Overall Picture

Mathias Weske 2009/10 POIS2 - 10

Execution Logs

• Assumptions
- Execution logs define a total order of events. An event can be

assigned to an activity and a process instance.

- All events in an execution log represent process instances of the
same process model.

• Hint
- It might be the case that real logs contain events of process

instances belonging to different process models.

- Also preprocessing is required to isolate logs and group them by
process model.

• Abstraction
- Mining algorithms are usually based on abstraction of logs

- We focus on the CaseID as well as the executed process activity

Mathias Weske 2009/10 POIS2 - 11

Execution logs

• Log format
- (caseID, Activity)

• Example

- Check invoice for invoice number 4567 ended on 12/11/2010 at

9:19:57

- Function StoreCustomerData(„Müller“, c1987, „Bad Bentheim“)

executed on 12.11.2010 at 9:22:24

- invoice sending for invoice number 4567 ended on 12/11/2010 at

9:23:18

- Function ContactCustomer(c1987, PromoMailing) executed on

12.11.2010 at 9:24:10

• Resulting Log

- (4567, Check Invoice), (c1987, StoreCustomerData), (4567, Send

invoice), (c1987, ContactCustomer)

Mathias Weske 2009/10 POIS2 - 12

Execution log

• Further abstraction

- A‘s and B‘s

- (case id, task id)

• Further Information

- Event type, time,

resource, data

- Not used in the

approaches we discuss

• Note

- The execution of an

activity is represented by

an event in the log

- Not: Start / End- events

for the activities

case 1 : task A

case 2 : task A

case 3 : task A

case 3 : task B

case 1 : task B

case 1 : task C

case 2 : task C

case 4 : task A

case 2 : task B

case 2 : task D

case 5 : task E

case 4 : task C

case 1 : task D

case 3 : task C

case 3 : task D

case 4 : task B

case 5 : task F

case 4 : task D

Mathias Weske 2009/10 POIS2 - 13

Process Discovery Algorithms

• Simplest algorithm: α – Algorithm

- Relatively simple, certain properties can be proved

- Sensitive to noise, therefore not suitable for real data

• Noise refers to incorrectly written logs

• Thereupon: α+(+) – Algorithm

- α+ und α++ as extensions for des α – algorithm to discover

further process structures

- Also sensitive to Noise

• Finally: Prospects for further methods, which can deal

with noise

Mathias Weske 2009/10 POIS2 - 14

Definitions

• Let T be a set of tasks and T * be the set of all sequnces

or arbitrary lengths over T, it shall:

- σ T * is called an execution sequence, if all activities in σ

belong to the same process instance

- W T * is called workflow log

• Assumptions

- In a process model each activity occurs at most once

- Any direct neighborhood relation between activities is observed

at least once

Mathias Weske 2009/10 POIS2 - 15

Execution log case 1 : task A

case 2 : task A

case 3 : task A

case 3 : task B

case 1 : task B

case 1 : task C

case 2 : task C

case 4 : task A

case 2 : task B

case 2 : task D

case 5 : task E

case 4 : task C

case 1 : task D

case 3 : task C

case 3 : task D

case 4 : task B

case 5 : task F

case 4 : task D

Mathias Weske 2009/10 POIS2 - 16

Execution sequences:

Case 1: ABCD

Case 2: ACBD

Case 3: ABCD

Case 4: ACBD

Case 5: EF

Corresponding execution log:

W = {ABCD, ACBD, EF}

case 1 : task A

case 2 : task A

case 3 : task A

case 3 : task B

case 1 : task B

case 1 : task C

case 2 : task C

case 4 : task A

case 2 : task B

case 2 : task D

case 5 : task E

case 4 : task C

case 1 : task D

case 3 : task C

case 3 : task D

case 4 : task B

case 5 : task F

case 4 : task D

Execution log

Mathias Weske 2009/10 POIS2 - 17

Ordering relations

Log-based Ordering relations for a pair of activities

a, b T in a workflow log:

•Direct follower

a >w b are in execution seqeunce iff b directly follows a.

•Causality

a w b iff a >w b but not b >w a

•Parallelism

a ║w b iff a >w b and b >w a

•Exclusiveness

a w b iff not a >w b and not b >w a

- Activity pairs that never follow each other

Mathias Weske 2009/10 POIS2 - 18

case 1 : task A

case 2 : task A

case 3 : task A

case 3 : task B

case 1 : task B

case 1 : task C

case 2 : task C

case 4 : task A

case 2 : task B

case 2 : task D

case 5 : task E

case 4 : task C

case 1 : task D

case 3 : task C

case 3 : task D

case 4 : task B

case 5 : task F

case 4 : task D

• W = {ABCD, ACBD, EF}
• Direct sequence

• Causaility

• Parallelsim

Analysis of Worflow log

Mathias Weske 2009/10 POIS2 - 19

case 1 : task A

case 2 : task A

case 3 : task A

case 3 : task B

case 1 : task B

case 1 : task C

case 2 : task C

case 4 : task A

case 2 : task B

case 2 : task D

case 5 : task E

case 4 : task C

case 1 : task D

case 3 : task C

case 3 : task D

case 4 : task B

case 5 : task F

case 4 : task D

A>B

A>C

B>C

B>D

C>B

C>D

E>F

AB

AC

BD

CD

EF

B||C

C||B

1) 2) 3)

W = {ABCD, ACBD, EF}
• Direct sequence

• Causaility

• Parallelsim

Analysis of Worflow log

Mathias Weske 2009/10 POIS2 - 20

α-Algorithm

• Idea

- Use ordering relationships to generate a workflow-net, so that all

generated execution sequences are respected.

• Concrete

- From any order relation a Petri net fragment is derived, which can

produce the corresponding order between activities.

Mathias Weske 2009/10 POIS2 - 21

α-Algorithm

• Idea 1

x y

x y

Mathias Weske 2009/10 POIS2 - 22

α-Algorithm

• Idea 2

x y, x z and y || z

x

z

y

Mathias Weske 2009/10 POIS2 - 23

α-Algorithm

• Idea 3

x y, x z and y # z

x

z

y

Mathias Weske 2009/10 POIS2 - 24

α-Algorithm

• Idea 4

x z, y z and x || y

x

y

z

Mathias Weske 2009/10 POIS2 - 25

α-Algorithm

• Idea 5

x z, y z and x # y

x

y

z

Mathias Weske 2009/10 POIS2 - 26

α-Algorithm

Let W be a workflow log over T. a(W) defined as follows:

1. TW = { t T | $s W t s},

2. TI = { t T | $s W t = first(s) },

3. TO = { t T | $s W t = last(s) },

4. XW = { (A,B) | A TW B TW "a A"b B a W b

"a1,a2 A a1#W a2 "b1,b2 B b1#W b2 },

5. YW = { (A,B) X | "(A,B) XA A B B (A,B) = (A,B) },

6. PW = { p(A,B) | (A,B) YW } {iW,oW},

7. FW = { (a,p(A,B)) | (A,B) YW a A }

{ (p(A,B),b) |(A,B) YW b B }

{ (iW,t) | t TI} { (t,oW) | t TO},

8. a(W) = (PW,TW,FW).

Mathias Weske 2009/10 POIS2 - 27

Let W be a workflow log over T. a(W) defined as follows:

1. TW = { t T | $s W t s},

2. TI = { t T | $s W t = first(s) },

3. TO = { t T | $s W t = last(s) },

4. XW = { (A,B) | A TW B TW "a A"b B a W b

"a1,a2 A a1#W a2 "b1,b2 B b1#W b2 },

5. YW = { (A,B) X | "(A,B) XA A B B (A,B) = (A,B) },

6. PW = { p(A,B) | (A,B) YW } {iW,oW},

7. FW = { (a,p(A,B)) | (A,B) YW a A }

{ (p(A,B),b) |(A,B) YW b B }

{ (iW,t) | t TI} { (t,oW) | t TO},

8. a(W) = (PW,TW,FW).

α-Algorithm

Result is a WF-Net:

PW : Set of places

TW : Set of transitions

FW : Set of flow relation

Mathias Weske 2009/10 POIS2 - 28

Let W be a workflow log over T. a(W) defined as follows: TW = { t

 T | $s W t s},

1. TI = { t T | $s W t = first(s) },

2. TO = { t T | $s W t = last(s) },

3. XW = { (A,B) | A TW B TW "a A"b B a W b

"a1,a2 A a1#W a2 "b1,b2 B b1#W b2 },

4. YW = { (A,B) X | "(A,B) XA A B B (A,B) = (A,B) },

5. PW = { p(A,B) | (A,B) YW } {iW,oW},

6. FW = { (a,p(A,B)) | (A,B) YW a A }

{ (p(A,B),b) |(A,B) YW b B }

{ (iW,t) | t TI} { (t,oW) | t TO},

7. a(W) = (PW,TW,FW).

α-Algorithm
All execution sequences are

examined to determine the set

Tw.

W = {ABCD, ACBD, EF}

TW = {A, B, C, D, E, F}

Mathias Weske 2009/10 POIS2 - 29

Let W be a workflow log over T. a(W) defined as follows:

TW = { t T | $s W t s},

1. TI = { t T | $s W t = first(s) },

2. TO = { t T | $s W t = last(s) },

3. XW = { (A,B) | A TW B TW "a A"b B a W b

"a1,a2 A a1#W a2 "b1,b2 B b1#W b2 },

4. YW = { (A,B) X | "(A,B) XA A B B (A,B) = (A,B) },

5. PW = { p(A,B) | (A,B) YW } {iW,oW},

6. FW = { (a,p(A,B)) | (A,B) YW a A }

{ (p(A,B),b) |(A,B) YW b B }

{ (iW,t) | t TI} { (t,oW) | t TO},

7. a(W) = (PW,TW,FW).

α-Algorithm first(s) [last(s)] denote the

first[last] transition in the

execution sequence s.

TI [TO] is the set of all initial[final]

transitions.

W = {ABCD, ACBD, EF}

TW = {A, B, C, D, E, F}

TI = {A, E}

TO = {D, F}

Mathias Weske 2009/10 POIS2 - 30

Let W be a workflow log over T. a(W) is defined as follows:

1. TW = { t T | $s W t s},

2. TI = { t T | $s W t = first(s) },

3. TO = { t T | $s W t = last(s) },

4. XW = { (A,B) | A TW B TW "a A"b B a W b

"a1,a2 A a1#W a2 "b1,b2 B b1#W b2 },

5. YW = { (A,B) X | "(A,B) XA A B B (A,B) = (A,B) },

6. PW = { p(A,B) | (A,B) YW } {iW,oW},

7. FW = { (a,p(A,B)) | (A,B) YW a A }

{ (p(A,B),b) |(A,B) YW b B }

{ (iW,t) | t TI} { (t,oW) | t TO},

8. a(W) = (PW,TW,FW).

α-Algorithm
iW is the initial place, oW is

the final place.

In step 7 they will be

connected to the transitions

in sets in TI and TO.

TI = {A, E}

TO = {D, F}

{ (iW,t) | t TI} = {(iW,A), (iW,E)}

{ (t,ow) | t TO} = {(D,ow), (F,ow)}

Mathias Weske 2009/10 POIS2 - 31

Let W be a workflow log over T. a(W) defined as follows:

1. TW = { t T | $s W t s},

2. TI = { t T | $s W t = first(s) },

3. TO = { t T | $s W t = last(s) },

4. XW = { (A,B) | A TW B TW "a A"b B a W b

"a1,a2 A a1#W a2 "b1,b2 B b1#W b2 },

5. YW = { (A,B) X | "(A,B) XA A B B (A,B) = (A,B) },

6. PW = { p(A,B) | (A,B) YW } {iW,oW},

7. FW = { (a,p(A,B)) | (A,B) YW a A }

{ (p(A,B),b) |(A,B) YW b B }

{ (iW,t) | t TI} { (t,oW) | t TO},

8. a(W) = (PW,TW,FW).

α-Algorithm All other places have the

form Form p(A,B) , in which A

and B are the predecessor or

the successor transitions.

A place is inserted between a

and b, iff.

aw b.

Mathias Weske 2009/10 POIS2 - 32

Let W be a workflow log over T. a(W) defined as follows:

1. TW = { t T | $s W t s},

2. TI = { t T | $s W t = first(s) },

3. TO = { t T | $s W t = last(s) },

4. XW = { (A,B) | A TW B TW "a A"b B a W b

"a1,a2 A a1#W a2 "b1,b2 B b1#W b2 },

5. YW = { (A,B) X | "(A,B) XA A B B (A,B) = (A,B) },

6. PW = { p(A,B) | (A,B) YW } {iW,oW},

7. FW = { (a,p(A,B)) | (A,B) YW a A }

{ (p(A,B),b) |(A,B) YW b B }

{ (iW,t) | t TI} { (t,oW) | t TO},

8. a(W) = (PW,TW,FW).

α-Algorithm Some places are combined

in the case of XOR-splits /

joins instead of AND-splits /

joins. For this purpose, the

relations XW and YW are

constructed.

Mathias Weske 2009/10 POIS2 - 33

Let W be a workflow log over T. a(W) defined as follows:

1. TW = { t T | $s W t s},

2. TI = { t T | $s W t = first(s) },

3. TO = { t T | $s W t = last(s) },

4. XW = { (A,B) | A TW B TW "a A"b B a W b

"a1,a2 A a1#W a2 "b1,b2 B b1#W b2 },

5. YW = { (A,B) X | "(A,B) XA A B B (A,B) = (A,B) },

6. PW = { p(A,B) | (A,B) YW } {iW,oW},

7. FW = { (a,p(A,B)) | (A,B) YW a A }

{ (p(A,B),b) |(A,B) YW b B }

{ (iW,t) | t TI} { (t,oW) | t TO},

8. a(W) = (PW,TW,FW).

α-Algorithm (A,B) XW if causality of

each element in A for each

element in B exists and the

elements in A and B were

never observed in the direct

sequence.

TW = {A, B, C, D, E, F}

XW = { ({A},{B}), ({A},{C}),

({B},{D}), ({C},{D}), ({E},{F})}

Hint: Because of B||C the

tuples ({A}, {B,C}) and

({B,C},{D}) are not in XW

AB

AC

BD

CD

EF

B||C

C||B

Mathias Weske 2009/10 POIS2 - 34

Let W be a workflow log over T. a(W) defined as follows:

1. TW = { t T | $s W t s},

2. TI = { t T | $s W t = first(s) },

3. TO = { t T | $s W t = last(s) },

4. XW = { (A,B) | A TW B TW "a A"b B a W b

"a1,a2 A a1#W a2 "b1,b2 B b1#W b2 },

5. YW = { (A,B) XW | "(A,B) XWA A B B (A,B) = (A,B) },

6. PW = { p(A,B) | (A,B) YW } {iW,oW},

7. FW = { (a,p(A,B)) | (A,B) YW a A }

{ (p(A,B),b) |(A,B) YW b B }

{ (iW,t) | t TI} { (t,oW) | t TO},

8. a(W) = (PW,TW,FW).

α-Algorithm

YW is derived from XW by

taking the largest elements

with respect to containment

YW = { ({A},{B}), ({A},{C}),

({B},{D}), ({C},{D}), ({E},{F})}

Hint: YW = XW because

" (A,B) XW : |A| = 1 |B| = 1

Mathias Weske 2009/10 POIS2 - 35

Let W be a workflow log over T. a(W) defined as follows:

1. TW = { t T | $s W t s},

2. TI = { t T | $s W t = first(s) },

3. TO = { t T | $s W t = last(s) },

4. XW = { (A,B) | A TW B TW "a A"b B a W b

"a1,a2 A a1#W a2 "b1,b2 B b1#W b2 },

5. YW = { (A,B) X | "(A,B) XA A B B (A,B) = (A,B) },

6. PW = { p(A,B) | (A,B) YW } {iW,oW},

7. FW = { (a,p(A,B)) | (A,B) YW a A }

{ (p(A,B),b) |(A,B) YW b B }

{ (iW,t) | t TI} { (t,oW) | t TO},

8. a(W) = (PW,TW,FW).

α-Algorithm

YW. is used to produce

places and edges

accordingly.

YW = { ({A},{B}), ({A},{C}),

({B},{D}), ({C},{D}), ({E},{F})}

PW = { p({A},{B}) , p({A},{C}),, p({B},{D}),,

p({C},{D}),, p({E},{F}),, iW , oW}

FW = {(A,p({A},{B})), (A,p({A},{C})),

(B,p({B},{D})), (C,p({C},{D})),

(E,p({E},{F})), (p({A},{B}) ,B),

(p({A},{C}) ,C), (p({B},{D}) ,D),

(p({C},{D}) ,D), (p({E},{F}) ,F),

(iW,A), (iW,E), (D, oW), (F, oW)}

Mathias Weske 2009/10 POIS2 - 36

α-Algorithm Example

case 1 : task A

case 2 : task A

case 3 : task A

case 3 : task B

case 1 : task B

case 1 : task C

case 2 : task C

case 4 : task A

case 2 : task B

case 2 : task D

case 5 : task E

case 4 : task C

case 1 : task D

case 3 : task C

case 3 : task D

case 4 : task B

case 5 : task F

case 4 : task D

Execution log:

Mathias Weske 2009/10 POIS2 - 37

Mathias Weske 2009/10 POIS2 - 38

α-Algorithm Example

case 1 : task A

case 2 : task A

case 3 : task A

case 3 : task B

case 1 : task B

case 1 : task C

case 2 : task C

case 4 : task A

case 2 : task B

case 2 : task D

case 5 : task E

case 4 : task C

case 1 : task D

case 3 : task C

case 3 : task D

case 4 : task B

case 5 : task F

case 4 : task D

A

B

C

D

E F

a(W):

Execution log:

α-Algorithm

iW (iW,E)
p({E},{F})

Mathias Weske 2009/10 POIS2 - 39

Another Example

• Case 1: abdeh

• Case 2: adceg

• Case 3: acdefbdeg

• Case 4: adbeh

• Case 5: acdefdcefcdeh

• Case 6: acdeg

Mathias Weske 2009/10 POIS2 - 40

a b c d e f g h

a # >, -> >, -> >, -> # # # #

b # # >, || >, -> # #

c # >, || >, ->

d >, || >, || # >, -> # #

e # # >, -> >, -> >, ->

f >, -> >, -> >, ->

g # # # # # # #

h # # # # #

Mathias Weske 2009/10 POIS2 - 41

α-Algorithm

Let W be a workflow log over T. a(W) defined as follows:

1. TW = { t T | $s W t s},

2. TI = { t T | $s W t = first(s) },

3. TO = { t T | $s W t = last(s) },

4. XW = { (A,B) | A TW B TW "a A"b B a W b

"a1,a2 A a1#W a2 "b1,b2 B b1#W b2 },

5. YW = { (A,B) X | "(A,B) XA A B B (A,B) = (A,B) },

6. PW = { p(A,B) | (A,B) YW } {iW,oW},

7. FW = { (a,p(A,B)) | (A,B) YW a A }

{ (p(A,B),b) |(A,B) YW b B }

{ (iW,t) | t TI} { (t,oW) | t TO},

8. a(W) = (PW,TW,FW).

Mathias Weske 2009/10 POIS2 - 42

• Tw = { a, b, c, d, e, f, g, h}

• Ti = {a}

• To ={g, h}

• Xw = {({a}, {b}), ({a}, {c}), ({a}, {d}), ({b}, {e}), ({c},{e}),

({d},{e}), ({e}, {f}), ({e},{g}), ({e},{h}), ({f}, {b}), ({f},{c}), ({f},

{d}), ({a}, {b, c}), ({f}, { b, c}) ({ a, f}, {b}), ({ a, f},{c}), ({a, f},

{ b, c}), ({a,f}, {d}), ({e}, { f, g, h}), ({b, c}, {e})}

• Yw = {({a,f}, { b, c}), ({a, f}, {d}), ({b,c}, {e}), ({d}, {e}), ({e},

{f, g, h})}

