
Topic 2: Workflow Systems Architectures &

BPEL



Mathias Weske 2010 POIS1 - 2

Evaluation

Design &

Analysis

Configuration

Enactment

Design: 
Business Process 

Identification and 

Modeling

Analysis:
Validation

Simulation

Verification

Configuration:
System Selection

Implementation

Test and Deployment

Enactment: 
Operation

Monitoring

Maintenance

Evaluation:
Process Mining

Business Activity Monitoring

Administration:
User, Software and 

Process Admin

from M. Weske: Business Process Management, © Springer-Verlag Berlin Heidelberg 2007 



Mathias Weske 2010 POIS1 - 3

Workflow-Architectures

Business Process Environment

Process Engine

Service Provider 1 Service Provider n

Business Process Model

Repository

Business Process 

Modeling

. . . 



Mathias Weske 2010 POIS1 - 4

WfMC Reference Architecture

• Workflow Management Coalition

- Interest group in Systems and application development

- Major outcome: WfMC reference architecture (1990ies)

• Objective of WfMC reference architecture

- Provide uniform interfaces in order to achieve interoperability 

between systems (and subsystems) of different manufacturers

• Process modeling tool of provider A can be combined with runtime 

environment of provider B.

- Exchange format XPDL: XML Process Definition Language

• Hint

- WfMC has partially received its target



Mathias Weske 2010 POIS1 - 5

WfMC Reference Architecture

Workflow Enactment 

Service

Workflow API and Interchange Formats

Process Definition 

Tools

Interface 1: XPDL

Workflow Client 

Applications
Invoked Applications

Interface 2 Interface 3

Other Workflow 

Enactment Services
Administration & 

Monitoring Tools

Interface 5 Interface 4

from M. Weske: Business Process Management, © Springer-Verlag Berlin Heidelberg 2007 



Mathias Weske 2010 POIS1 - 6

Service-based Architectures

• Objective

- Re-usable and well-defined business functionality is provided by 

services (services)

- Create new applications and adapt existing applications easily 

and inexpensively

• Requirements

- Service descriptions must be accessible and sufficiently precise

- Identification, specification and realization of business 

functionality through services (service carving)

- Implementation of Services (service enabling)



Mathias Weske 2010 POIS1 - 7

W3C Web-Services

• Current implementation of service oriented architectures

• Characterization

- Web services are self-contained, self-describing, modular 

applications that can be published, located, and invoked across 

the web. 

- Web services perform functions, which can be anything from 

simple requests to complicated business processes. 

- Once a web service is deployed, other applications (and other 

web services) can discover and invoke the deployed service. 

- XML messaging is used to interact with a web service.



Mathias Weske 2010 POIS1 - 8

Web-Services

• Central Standards

- SOAP: XML Message formatting

- Web Service Description Language WSDL: Format for the 

specification of services and their methods, and input message 

and the output message

• Logical and physical aspects are described

- Universal Description, Discovery, and Integration (UDDI):

Structured storage of service descriptions and descriptions of 

service providers and request functionality

• Hint

- UDDI is in contrast to SOAP and WSDL not widely accepted 

today



Mathias Weske 2010 POIS1 - 9

Web Service Triangle

Service Requestor Service Provider

Service Registry

4: bind / invoke

2: request 1:
 re

gi
st

er3: reply

UDDI

WSDL

SOAP

WSDL

from M. Weske: Business Process Management, © Springer-Verlag Berlin Heidelberg 2007 



Mathias Weske 2010 POIS1 - 10

Web-Service Composition

• Idea

- System workflows in service-oriented environments are realized 

by composing Web services

- Concept is recursive, that is a service composition can in turn be 

described as a service using WSDL and be part of a higher 

service composition

• Industry standard: WSBPEL, Business Process Execution 

Language for Web Services

- Combination of WSFL (Web Services Flow Language) from IBM 

and XLANG from Microsoft

- Very powerful language with support for complex control flow

- OASIS-Standard, 2007



Mathias Weske 2010 POIS1 - 11

WSBPEL Design Goals

• WSBPEL bases on W3C Web-Services

- WSBPEL processes interact with Web services, which were 

described by WSDL

- Structure of these processes is described by a corresponding 

XML schema definition

- WSBPEL processes have no graphical representation

- WSBPEL "inherits" from

• XLANG (block structure with special control flow constructs)

• WSFL (graph structure with transition condition)

- WSBPEL allows these two views to combine the modeling of 

processes together



Mathias Weske 2010 POIS1 - 12

WSBPEL Design Goals

• Data Management

- Data-dependent control flow can be defined

- Data in web services messages are used to analyse conditions 

affecting control flow.

• Correlation

- Process instances have unique identifiers

- Partner-Organisations can use different process instance identifier

- Correlation is defined by properties of messages

• Modularization

- WSBPEL-Process can be a service of its own that is described by 

a WSDL file and thus can be part of another service-composition.



Mathias Weske 2010 POIS1 - 13

WSBPEL Concepts

• Each process consists of exactly one <process> element 

that can contain other activities.

• Types of Activities

- Structured activities

- Web-Service Activities



Mathias Weske 2010 POIS1 - 14

Web-Services Activities

• Invoke: An operation of a Web service is invoked. This 
may possibly have an answer

• Receive: Awaiting receipt of a message
- createInstance=„yes“ signals process instantiation

• Reply: Send a reply in response to receipt of a message

• Wait: A defined period of time to wait

• Assign: Assignment of data values​​, for example of a 
received message to a process variable

• Throw: Show errors for exception handling

• Terminate: terminate the whole process instance.



Mathias Weske 2010 POIS1 - 15

WSBPEL Control flow, block structured

- Sequence

<sequence>

<!-- activities -->

</sequence>

- Switch / Case

<switch>

<case condition = “condition”> <!-- activity --> </case>

<case condition = “condition”> <!-- activity --> </case>

</switch>

- While

<while condition = “condition”> 

<!-- activity -->

</while>



Mathias Weske 2010 POIS1 - 16

WSBPEL Control flow, block structured
- Pick: Waiting for an event from a set of possible events (deferred 

choice, event-based XOR split)

<pick>

<onMessage .../>

<onAlarm .../>

</pick>

- If: conditional branch

<if condition = “condition”> activity

<elseif condition = “condition”>activity</elseif>

<else> activity</else></if>

- Flow: concurrent execution 

<flow>

<!-- activities -->

</flow>



Mathias Weske 2010 POIS1 - 17

WSBPEL Control flow, block structured
 Scope: Allows defining a notion of sub-process. In scopes, you can define 

variables, messages, other control flows with their exception handling etc.
<scope>

<partnerLinks>

<!-- Partner link definitions local to scope. -->

</partnerLinks>

<messageExchanges>

<!-- Message exchanges local to scope.-->

</messageExchanges>

<variables>

<!-- Variable definitions local to scope. -->

</variables>

<correlationSets>

<!-- Correlation sets local to scope.-->

</correlationSets>

<faultHandlers>

<!-- Fault handlers local to scope. -->

</faultHandlers>

activity

</scope>



Mathias Weske 2010 POIS1 - 18

<scope>

<faultHandlers>

<catch faultName="emp:WrongEmployeeName" >

<!-- Perform an activity --></catch>

<catch faultName="emp:TravelNotAllowed"

faultVariable="Description" >

<!-- Perform an activity </catch>

<catchAll>

<!-- Perform an activity -->

</catchAll>

</faultHandlers>

<invoke partnerLink="employeeTravelStatus"

portType="emp:EmployeeTravelStatusPT"

operation="EmployeeTravelStatus"

inputVariable="EmployeeTravelStatusRequest"

outputVariable="EmployeeTravelStatusResponse" >

</invoke>

</scope>



Mathias Weske 2010 POIS1 - 19

WSBPEL control flow, graph structured

• Link defines an execution order between activities

• Anchor: Naming of links
<links>

<link name=“link1”/>

</links>

• Source 
<someActivity name = “X”>

<source linkName=”link1"/>

</someActivity>

• Target
<someActivity name = “Y”>

<target linkName=”link1"/>

</someActivity>



Mathias Weske 2010 POIS1 - 20

Control flow example 1

<process>

<sequence>

<receive createInstance=„yes“ />

<if>

<invoke />

<else>

<invoke />

</else>

</if>

<reply />

</sequence>

</process>



Mathias Weske 2010 POIS1 - 21

Control flow example 2

<process>

<sequence>

<receive createInstance=„yes“ />

<invoke />

<pick>

<onMessage>

<reply />

</onMessage>

<onAlarm>

<reply />

</onAlarm>

</pick>

</sequence>

</process>



Mathias Weske 2010 POIS1 - 22

Control flow example 3
<process>

<sequence>

<receive createInstance=„yes“ />

<flow>

<invoke />

<invoke />

</flow>

<forEach>

<scope>

<sequence>

<invoke />

<receive />

<sequence>

</scope>

</forEach>

<reply />

</sequence>

</process>



Mathias Weske 2010 POIS1 - 23

Control flow example 4

<process>

<sequence>

<receive createInstance=„yes“ />

<flow>

<links><link name=„l1“ /></links>

<sequence>

<invoke />

<invoke>

<targets><target linkName=„l1“ /></targets>

</invoke>

</sequence>

<sequence>

<invoke>

<sources><source linkName=„l1“ /></sources>

</invoke>

<invoke />

</sequence>

</flow>

<reply />

</sequence>

</process>



Mathias Weske 2010 POIS1 - 24

Example: Service Composition

Purchase Order Service (BPEL Service Composition)

Scheduling ServiceShipping ServiceInvoicing Service

Initial Price 

Calculation

Complete Price 

Calculation

Request Shipping

Create Shipping 

Schedule

Request 

Production 

Schedule

Complete 

Scheduling

Receive Purchase 

Order

Send Invoice

from M. Weske: Business Process Management, © Springer-Verlag Berlin Heidelberg 2007 



Mathias Weske 2010 POIS1 - 25

Communication Behavior

Purchase Order Process

schedulingshipping

In
v
o

k
e

 

in
it
ia

lP
ri
c
e

C
a

lc
u

la
ti
o

n

invoicing

In
v
o

k
e

 

s
e

n
d

S
h

ip
p

in
g

P
ri
c
e

re
c
e

iv
e

In
v
o

ic
e

re
c
e

iv
e

 

p
u

c
h

a
s
e

O
rd

e
r

purchasing

re
p

ly

In
v
o

ic
e

In
v
o

k
e

 

re
q

u
e

s
tS

h
ip

p
in

g

re
c
e

iv
e

 

S
h

ip
p

in
g

S
c
h

e
d

u
le

In
v
o

k
e

 

S
e

n
d

S
h

ip
p

in
g

S
c
h

e
d

u
le

In
v
o

k
e

 

re
q

u
e

s
tP

ro
d

u
c
ti
o

n

S
c
h

e
d

u
lin

g



Mathias Weske 2010 POIS1 - 26

O
v
e
ra

ll
 p

ic
tu

re
 s

e
rv

ic
e
 

c
o

m
p

o
s

it
io

n

Receive 

Purchase 

Order

Initiate Price 

Calculation

Initiate 

Production 

Scheduling

Complete Price 

Calculation

Complete 

Production 

Scheduling

Decide on 

Shipper

Arrange 

Logistics

re
c
e

iv
e

 

p
u

c
h

a
s
e

O
rd

e
r

In
v
o
k
e
 

in
it
ia

lP
ri
c
e
C

a
lc

u
la

ti
o
n

schedulingshipping

invoicing

In
v
o

k
e

 

re
q

u
e

s
tS

h
ip

p
in

g

re
ce

iv
e
 

S
h
ip

p
in

g
S

ch
e
d
u
le

In
v
o

k
e

 

S
e

n
d

S
h

ip
p

in
g

S
c
h

e
d

u
le

purchasing

In
v
o

k
e

 

s
e

n
d

S
h

ip
p

in
g

P
ri
c
e

re
c
e

iv
e

s
e

n
d

In
v
o

ic
e

Invoke 

requestP
roduction

S
cheduling

Invoice 

Processing

re
p

ly

In
v
o

ic
e



Mathias Weske 2010 POIS1 - 27

WSBPEL-representation (Simplified) 



Mathias Weske 2010 POIS1 - 28



Mathias Weske 2010 POIS1 - 29

Correlation

• Idea

• Process Engine sends out many messages of the same type and 

receives many messages of the same type

• Question: How does a 

message finds its way to the

right <receive> ?

• Example

• Offers are sent

• Confirmations are received

• Approach

• Solution: Send „Order ID“ as part of the message

• The <receive> activity registers itself for the matching Order IDs only.



Mathias Weske 2010 POIS1 - 30

Correlations

<correlationSets>

<correlationSet name=“OfferCorr“
properties="cor:Id"/>

</correlationSets>

<invoke inputVariable=“Offer">

<correlations>

<correlation set=“OfferCorr" initiate=“yes" />

</correlations>

</invoke>

<receive variable=“Offer">

<correlations>

<correlation set=“OfferCorr" initiate=“no">

</correlations>

</receive> 



Mathias Weske 2010 POIS1 - 31

Variables

<Variables>

<variable name=“x” messageType=“namespace:tag”/>

</Variables>

Variables are used to contain data in BPEL. A variable can 

either contain an XSD value or a WSDL message. In the 

example above, a variable called ‘x' is declared as 

a container for WSDL messages of type ‘namespace:tag'. 

Instead of the 'messageType' attribute, the variable could 

have had a 'type' attribute which would specify some xsd

simple or complex type like 'xsd:string' or 'xsd:integer'.

Variables are used to pass data in and out of web service 

endpoints 



Mathias Weske 2010 POIS1 - 32

Variable Assignment

<Assign>

<Copy>

<from><literal>Hello</literal></from>

<to>$x.value</to>

</Copy>

</Assign>

Variables are manipulated in BPEL either through use via 

web service endpoints or by assignment. The example 

above shows a literal string value being assigned into the 

variable ‘x'. The variable ‘x' in this case 

is a WSDL message with a part called 'value'. The part 

called 'value' is an 'xsd:string' type. It can therefore have 

other 'xsd:string's assigned into it, including literal strings' 



Mathias Weske 2010 POIS1 - 37

Mapping from BPMN to BPEL

• Idea
- BPMN for Modeling of Processes

- Added value through automatic mapping to executable languages

• BPEL for Orchestration of Web-Services

• Remark
- BPMN allows arbitrary graph structures, while BPEL is block 

structured principle (link allowed)

• Approach
- Identifying block structured part of BPD, so-called components 

that can be translated directly into BPEL code

- These parts are combined in an incremental process



Mathias Weske 2010 POIS1 - 38

Definition Component

• It is based on well-formed business process diagrams 
BPD

• Components are  block-structured parts of a BPD that:
- Do not have start or end events

- Have exactly one entry and one exit node

- Have exactly one entry and one exit edge.



Mathias Weske 2010 POIS1 - 39



Mathias Weske 2010 POIS1 - 40

Folding of the Components

• Approach

- Component C is replaced by a task tc, which is connected to 

BPEL description of C, mapping (tc) associated

- Repeated identifying components and folding of the components 

into tasks results in BPEL specification, which represents the 

structure of BPD

• Basic mappings

- Service Task in BPMN: <invoke>-Activity in BPEL

- Receive Task in BPMN: <receive>-Activity in BPEL



Mathias Weske 2010 POIS1 - 41

• BPEL-Representation of C1

Mapping(tC1)

<sequence name=„tc1“>

<invoke name=„Activity_B“ … >

<invoke name=„Activity_D“ … >

<invoke name=„Activity_F“ … >

</sequence>

Component Folding



Mathias Weske 2010 POIS1 - 42

Mapping Rules



Mathias Weske 2010 POIS1 - 43

Mapping Rules



Mathias Weske 2010 POIS1 - 44



Mathias Weske 2010 POIS1 - 45

Mapping Rules



Mathias Weske 2010 POIS1 - 46

Example

• Scenario
- Query processing, with

• AND, XOR Split/Join

• Deferred Choice

• Intermediate Events



Mathias Weske 2010 POIS1 - 47



Mathias Weske 2010 POIS1 - 48



Mathias Weske 2010 POIS1 - 49

• Problem
- AND synchronization between concurrent activities

- Component C4 can begin only when evaluate and C3 complete

• Solution
- Link between these components



Mathias Weske 2010 POIS1 - 50



Mathias Weske 2010 POIS1 - 51



Mathias Weske 2010 POIS1 - 52



Mathias Weske 2010 POIS1 - 53

Map the following Process to BPEL



Mathias Weske 2010 POIS1 - 54

<process>

<sequence>

<receive createinstance="yes">

</receive>

<flow>

<invoke name="Collect and evaluate data"/>

<invoke name="Collect and evaluate data"/>

<invoke name="Collect and evaluate data"/>

</flow>

<invoke name="Check for concurrent application"/>



Mathias Weske 2010 POIS1 - 55

<scope>

<faultHandler>

<catch>

<sequence>

<invoke name="Handle error"/>

<reply/>

</seqeunce>

</catch>

</faultHandler>



Mathias Weske 2010 POIS1 - 56

<eventHandler>

<onMessage>

<seqeunce>

<invoke name="send mail"/>

<invoke name="suspend process"/>

<terminate/>

</seqeunce>

</onMessage>

</eventHandler>



Mathias Weske 2010 POIS1 - 57

<sequence>

<invoke name="automated credit rating"/>

<invoke name="Manual credit rating"/>

<invoke name="credit decision"/>

<flow>

<invoke name="file operation"/>

<if>

<condition>decision=yes</condition>

<invoke name="Payout handling"/>



Mathias Weske 2010 POIS1 - 58

<elseif>

<condition>decision=no</condition>

<invoke name="Rejection handling"/>

</elseif>

</if>

</flow>

</seqeunce>

</scope>

<invoke name="Finalize application"/>

<reply/></sequence></process>


