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WfMC Reference Architecture

• Workflow Management Coalition

- Interest group in Systems and application development

- Major outcome: WfMC reference architecture (1990ies)

• Objective of WfMC reference architecture

- Provide uniform interfaces in order to achieve interoperability 

between systems (and subsystems) of different manufacturers

• Process modeling tool of provider A can be combined with runtime 

environment of provider B.

- Exchange format XPDL: XML Process Definition Language

• Hint

- WfMC has partially received its target
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Service-based Architectures

• Objective

- Re-usable and well-defined business functionality is provided by 

services (services)

- Create new applications and adapt existing applications easily 

and inexpensively

• Requirements

- Service descriptions must be accessible and sufficiently precise

- Identification, specification and realization of business 

functionality through services (service carving)

- Implementation of Services (service enabling)
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W3C Web-Services

• Current implementation of service oriented architectures

• Characterization

- Web services are self-contained, self-describing, modular 

applications that can be published, located, and invoked across 

the web. 

- Web services perform functions, which can be anything from 

simple requests to complicated business processes. 

- Once a web service is deployed, other applications (and other 

web services) can discover and invoke the deployed service. 

- XML messaging is used to interact with a web service.
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Web-Services

• Central Standards

- SOAP: XML Message formatting

- Web Service Description Language WSDL: Format for the 

specification of services and their methods, and input message 

and the output message

• Logical and physical aspects are described

- Universal Description, Discovery, and Integration (UDDI):

Structured storage of service descriptions and descriptions of 

service providers and request functionality

• Hint

- UDDI is in contrast to SOAP and WSDL not widely accepted 

today
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Web-Service Composition

• Idea

- System workflows in service-oriented environments are realized 

by composing Web services

- Concept is recursive, that is a service composition can in turn be 

described as a service using WSDL and be part of a higher 

service composition

• Industry standard: WSBPEL, Business Process Execution 

Language for Web Services

- Combination of WSFL (Web Services Flow Language) from IBM 

and XLANG from Microsoft

- Very powerful language with support for complex control flow

- OASIS-Standard, 2007
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WSBPEL Design Goals

• WSBPEL bases on W3C Web-Services

- WSBPEL processes interact with Web services, which were 

described by WSDL

- Structure of these processes is described by a corresponding 

XML schema definition

- WSBPEL processes have no graphical representation

- WSBPEL "inherits" from

• XLANG (block structure with special control flow constructs)

• WSFL (graph structure with transition condition)

- WSBPEL allows these two views to combine the modeling of 

processes together
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WSBPEL Design Goals

• Data Management

- Data-dependent control flow can be defined

- Data in web services messages are used to analyse conditions 

affecting control flow.

• Correlation

- Process instances have unique identifiers

- Partner-Organisations can use different process instance identifier

- Correlation is defined by properties of messages

• Modularization

- WSBPEL-Process can be a service of its own that is described by 

a WSDL file and thus can be part of another service-composition.
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WSBPEL Concepts

• Each process consists of exactly one <process> element 

that can contain other activities.

• Types of Activities

- Structured activities

- Web-Service Activities
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Web-Services Activities

• Invoke: An operation of a Web service is invoked. This 
may possibly have an answer

• Receive: Awaiting receipt of a message
- createInstance=„yes“ signals process instantiation

• Reply: Send a reply in response to receipt of a message

• Wait: A defined period of time to wait

• Assign: Assignment of data values​​, for example of a 
received message to a process variable

• Throw: Show errors for exception handling

• Terminate: terminate the whole process instance.
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WSBPEL Control flow, block structured

- Sequence

<sequence>

<!-- activities -->

</sequence>

- Switch / Case

<switch>

<case condition = “condition”> <!-- activity --> </case>

<case condition = “condition”> <!-- activity --> </case>

</switch>

- While

<while condition = “condition”> 

<!-- activity -->

</while>
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WSBPEL Control flow, block structured
- Pick: Waiting for an event from a set of possible events (deferred 

choice, event-based XOR split)

<pick>

<onMessage .../>

<onAlarm .../>

</pick>

- If: conditional branch

<if condition = “condition”> activity

<elseif condition = “condition”>activity</elseif>

<else> activity</else></if>

- Flow: concurrent execution 

<flow>

<!-- activities -->

</flow>
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WSBPEL Control flow, block structured
 Scope: Allows defining a notion of sub-process. In scopes, you can define 

variables, messages, other control flows with their exception handling etc.
<scope>

<partnerLinks>

<!-- Partner link definitions local to scope. -->

</partnerLinks>

<messageExchanges>

<!-- Message exchanges local to scope.-->

</messageExchanges>

<variables>

<!-- Variable definitions local to scope. -->

</variables>

<correlationSets>

<!-- Correlation sets local to scope.-->

</correlationSets>

<faultHandlers>

<!-- Fault handlers local to scope. -->

</faultHandlers>

activity

</scope>
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<scope>

<faultHandlers>

<catch faultName="emp:WrongEmployeeName" >

<!-- Perform an activity --></catch>

<catch faultName="emp:TravelNotAllowed"

faultVariable="Description" >

<!-- Perform an activity </catch>

<catchAll>

<!-- Perform an activity -->

</catchAll>

</faultHandlers>

<invoke partnerLink="employeeTravelStatus"

portType="emp:EmployeeTravelStatusPT"

operation="EmployeeTravelStatus"

inputVariable="EmployeeTravelStatusRequest"

outputVariable="EmployeeTravelStatusResponse" >

</invoke>

</scope>
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WSBPEL control flow, graph structured

• Link defines an execution order between activities

• Anchor: Naming of links
<links>

<link name=“link1”/>

</links>

• Source 
<someActivity name = “X”>

<source linkName=”link1"/>

</someActivity>

• Target
<someActivity name = “Y”>

<target linkName=”link1"/>

</someActivity>
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Control flow example 1

<process>

<sequence>

<receive createInstance=„yes“ />

<if>

<invoke />

<else>

<invoke />

</else>

</if>

<reply />

</sequence>

</process>
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Control flow example 2

<process>

<sequence>

<receive createInstance=„yes“ />

<invoke />

<pick>

<onMessage>

<reply />

</onMessage>

<onAlarm>

<reply />

</onAlarm>

</pick>

</sequence>

</process>
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Control flow example 3
<process>

<sequence>

<receive createInstance=„yes“ />

<flow>

<invoke />

<invoke />

</flow>

<forEach>

<scope>

<sequence>

<invoke />

<receive />

<sequence>

</scope>

</forEach>

<reply />

</sequence>

</process>
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Control flow example 4

<process>

<sequence>

<receive createInstance=„yes“ />

<flow>

<links><link name=„l1“ /></links>

<sequence>

<invoke />

<invoke>

<targets><target linkName=„l1“ /></targets>

</invoke>

</sequence>

<sequence>

<invoke>

<sources><source linkName=„l1“ /></sources>

</invoke>

<invoke />

</sequence>

</flow>

<reply />

</sequence>

</process>
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Example: Service Composition

Purchase Order Service (BPEL Service Composition)

Scheduling ServiceShipping ServiceInvoicing Service

Initial Price 

Calculation

Complete Price 

Calculation

Request Shipping

Create Shipping 

Schedule

Request 

Production 

Schedule

Complete 

Scheduling

Receive Purchase 

Order
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Communication Behavior
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WSBPEL-representation (Simplified) 



Mathias Weske 2010 POIS1 - 28



Mathias Weske 2010 POIS1 - 29

Correlation

• Idea

• Process Engine sends out many messages of the same type and 

receives many messages of the same type

• Question: How does a 

message finds its way to the

right <receive> ?

• Example

• Offers are sent

• Confirmations are received

• Approach

• Solution: Send „Order ID“ as part of the message

• The <receive> activity registers itself for the matching Order IDs only.
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Correlations

<correlationSets>

<correlationSet name=“OfferCorr“
properties="cor:Id"/>

</correlationSets>

<invoke inputVariable=“Offer">

<correlations>

<correlation set=“OfferCorr" initiate=“yes" />

</correlations>

</invoke>

<receive variable=“Offer">

<correlations>

<correlation set=“OfferCorr" initiate=“no">

</correlations>

</receive> 
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Variables

<Variables>

<variable name=“x” messageType=“namespace:tag”/>

</Variables>

Variables are used to contain data in BPEL. A variable can 

either contain an XSD value or a WSDL message. In the 

example above, a variable called ‘x' is declared as 

a container for WSDL messages of type ‘namespace:tag'. 

Instead of the 'messageType' attribute, the variable could 

have had a 'type' attribute which would specify some xsd

simple or complex type like 'xsd:string' or 'xsd:integer'.

Variables are used to pass data in and out of web service 

endpoints 
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Variable Assignment

<Assign>

<Copy>

<from><literal>Hello</literal></from>

<to>$x.value</to>

</Copy>

</Assign>

Variables are manipulated in BPEL either through use via 

web service endpoints or by assignment. The example 

above shows a literal string value being assigned into the 

variable ‘x'. The variable ‘x' in this case 

is a WSDL message with a part called 'value'. The part 

called 'value' is an 'xsd:string' type. It can therefore have 

other 'xsd:string's assigned into it, including literal strings' 
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Mapping from BPMN to BPEL

• Idea
- BPMN for Modeling of Processes

- Added value through automatic mapping to executable languages

• BPEL for Orchestration of Web-Services

• Remark
- BPMN allows arbitrary graph structures, while BPEL is block 

structured principle (link allowed)

• Approach
- Identifying block structured part of BPD, so-called components 

that can be translated directly into BPEL code

- These parts are combined in an incremental process
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Definition Component

• It is based on well-formed business process diagrams 
BPD

• Components are  block-structured parts of a BPD that:
- Do not have start or end events

- Have exactly one entry and one exit node

- Have exactly one entry and one exit edge.
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Folding of the Components

• Approach

- Component C is replaced by a task tc, which is connected to 

BPEL description of C, mapping (tc) associated

- Repeated identifying components and folding of the components 

into tasks results in BPEL specification, which represents the 

structure of BPD

• Basic mappings

- Service Task in BPMN: <invoke>-Activity in BPEL

- Receive Task in BPMN: <receive>-Activity in BPEL
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• BPEL-Representation of C1

Mapping(tC1)

<sequence name=„tc1“>

<invoke name=„Activity_B“ … >

<invoke name=„Activity_D“ … >

<invoke name=„Activity_F“ … >

</sequence>

Component Folding
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Mapping Rules
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Mapping Rules
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Mapping Rules
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Example

• Scenario
- Query processing, with

• AND, XOR Split/Join

• Deferred Choice

• Intermediate Events
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• Problem
- AND synchronization between concurrent activities

- Component C4 can begin only when evaluate and C3 complete

• Solution
- Link between these components
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Map the following Process to BPEL
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<process>

<sequence>

<receive createinstance="yes">

</receive>

<flow>

<invoke name="Collect and evaluate data"/>

<invoke name="Collect and evaluate data"/>

<invoke name="Collect and evaluate data"/>

</flow>

<invoke name="Check for concurrent application"/>
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<scope>

<faultHandler>

<catch>

<sequence>

<invoke name="Handle error"/>

<reply/>

</seqeunce>

</catch>

</faultHandler>
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<eventHandler>

<onMessage>

<seqeunce>

<invoke name="send mail"/>

<invoke name="suspend process"/>

<terminate/>

</seqeunce>

</onMessage>

</eventHandler>
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<sequence>

<invoke name="automated credit rating"/>

<invoke name="Manual credit rating"/>

<invoke name="credit decision"/>

<flow>

<invoke name="file operation"/>

<if>

<condition>decision=yes</condition>

<invoke name="Payout handling"/>
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<elseif>

<condition>decision=no</condition>

<invoke name="Rejection handling"/>

</elseif>

</if>

</flow>

</seqeunce>

</scope>

<invoke name="Finalize application"/>

<reply/></sequence></process>


