
Systems Analysis and Design II
(IS352)

Dr. Ahmed Awad

Spring 2015

Slide 1

Outline

• Model Driven Architecture (MDA)

• Object Relational Mapping (ORM)

• Workflow systems Architectures

• Business Process Execution Language for Web Services (PBEL4WS)

• Process Instantiation

• Process Mining

Transiting from Analysis to
Design/Configuration/Enactment

Slide 3

MDA Overview

What is the MDA?

An approach to IT system specification that
separates the specification of system functionality
from the specification of the implementation of
that functionality on a particular technology
platform

• “Design once, build it on any platform”

Basic concepts of MDA

A model is a formal specification of the function,
structure and/or behaviour of a system
• Examples:

 A BPMN process is a model

 An UML-based specification is a model

Models of different systems are structured explicitly
into:
Platform Independent Models (PIM)
Platform Specific Models (PSM)

Platform Independent Model (PIM)

 A “formal” specification of the structure and function of a system
that abstracts away technical detail

 Expressed using UML

PIM: an example

Platform Specific Model (PSM)

 Specifies how the functionality specified in a PIM is realized on a
particular platform

 Expressed using UML extended with platform specific UML profiles

PSM: an example

Developing in MDA

System Development Lifecycle and the MDA
approach

UML MOF CWM

Time

PIM to PIM
mappings

PIM to PSM
mappings

(projection on a
specific platform)

PSM to
PSM

mappings

Developing in MDA – Step 1:
the PIM

All MDA development projects start with the
creation of a PIM

PIM at this level represents business functionality
and behaviour, undistorted by technology details

Developing in MDA – Step 2:
the PSM (1/2)

Once the first iteration is complete, the
PIM is input to the mapping step which
will produce a PSM

Code is partially automatic and partially
hand-written

PIM can be mapped either to a single
platform or to multiple platforms

Developing in MDA – Step 2:
the PSM (2/2)

PIM

CORBA
Model

Maps to

Java/EJB
Model

Maps to

Other
Model

…

Maps to

Developing in MDA – Step 3:
Generating Application (1/2)

An MDA tool generates all or most of the
implementation code for the deployment
technology selected by the developer

Re-integration on new platforms can be done
by reverse engineering the existing
application into a model and redeploy

Developing in MDA – Step 3:
Generating Application (2/2)

PIM

CORBA
Model

Maps to

Java/EJB
Model

Maps to

Other
Model

…

Maps to

CORBA Java/EJB Other
…

Maps to Maps to Maps to

Object-Relational Mapping

Slide 18

What is ORM?

Object-relational mapping, in the purest
sense, is a programming technique that
supports the conversion of incompatible types
in object-oriented programming languages,
specifically between a data store and
programming objects.

Slide 19

Slide 20

Why ORM?

•Productivity: The data access code is usually a
significant portion of a typical application, and the time
needed to write that code can be a significant portion
of the overall development schedule. When using an
ORM tool, the amount of code is unlikely to be
reduced—in fact, it might even go up—but the ORM
tool generates 100% of the data access code
automatically based on the data model you define, in
mere moments.

Slide 21

Why ORM?

•Application design: A good ORM tool designed by
very experienced software architects will
implement effective design patterns that almost
force you to use good programming practices in an
application. This can help support a clean
separation of concerns and independent
development that allows parallel, simultaneous
development of application layers.

Slide 22

Why ORM?

•Code Reuse: If you create a class library to generate
a separate DLL for the ORM-generated data access
code, you can easily reuse the data objects in a
variety of applications. This way, each of the
applications that use the class library need have no
data access code at all.

Slide 23

Why ORM?

•Application Maintainability: All of the code
generated by the ORM is presumably well-tested, so
you usually don’t need to worry about testing it
extensively.

Slide 24

ORM in one sentence...

Never write SQL statements in your source code!

Slide 25

Relational Databases

•Collection of tables
• Comprised of fields that define entities
• Primary key has unique values in each row of a table
• Foreign key is primary key of another table

•Tables related to each other
• Primary key field of a table is a field of another table and

called a foreign key
• Relationship established by a foreign key of one table

connecting to the primary key of another table

Slide 26

Referential Integrity

• the idea of ensuring that values linking the tables together through
the primary and foreign keys are valid and correctly synchronized.

Slide 27

Referential Integrity Example

•Cust. ID is a primary key for the customer
table
•Cust. ID is a foreign key for the order table
•A violation of referential integrity would
happen if an order was entered in the order
table for a Cust. ID that had not been entered
into the customer table first
•An RDBMS prevents such a record from being
entered

Slide 28

Example of Referential Integrity

Slide 29

Object-Relational Mapping (ORM)

Slide 30

Mapping attributes

Mapping classes

Mapping relationships

Inheritance

Associations

Mapping methods?

Mapping attributes

Slide 31

The most straightforward mapping

Simple types are common between
object paradigm and relational models

Strings, dates, integers are common

String in Java is varchar(length) in SQL
Server

Mapping classes

Slide 32

In general, classes map to tables in one-
to-one mapping

In some cases, multiple classes can map
to a single table, e.g., inheritance

Mapping Inheritance

Slide 33

<<abstract>>

Role

attributes1

operations

Faculty

attributes2

operations

Student

attributes3

operations

Staff

attributes4

operations

Visitor

attributes5

operations

Mapping Inheritance

Slide 34

Map the entire class hierarchy to a
single table

Map each concrete class to its own table

Map each class to its own table

Map the classes into a generic table
structure

Slide 35

Map Hierarchy to a single table

Slide 36

Discriminator:
Customer, Employee

Extra column: for the executive class

Discriminator:
Customer, Employee,
Executive

What if Types overlap

Slide 37

Map Each Concrete Class to its Own Table

Slide 38

Map Each class to its Own Table

Slide 39

Comparison

Slide 40

Strategy Advantages Disadvantag
es

When to Use

One table per
hierarchy

Simple approach.

Easy to add new
classes, you just
need to add new
columns for the
additional data.

Supports
polymorphism by
simply changing the
type of the row.

Data access is fast
because the data is
in one table.

Ad-hoc reporting is
very easy because
all of the data is
found in one table.

Coupling within the
class hierarchy is
increased because all
classes are directly
coupled to the same
table.
A change in one
class can affect the
table which can then
affect the other
classes in the
hierarchy.

Space potentially
wasted in the
database.

Indicating the type
becomes complex
when significant
overlap between
types exists.

Table can grow
quickly for large
hierarchies.

This is a good
strategy for simple
and/or shallow class
hierarchies where
there is little or no
overlap between the
types within the
hierarchy.

Comparison

Slide 41

Strategy Advantages Disadvantag
es

When to Use

One table per
concrete class

easy to do ad-hoc
reporting as all the
data you need about
a single class is
stored in only one
table.

Good performance to
access a single
object’s data.

When you modify a
class you need to
modify its table and
the table of any of
its subclasses. For
example if you were
to add height and
weight to the Person
class you would need
to add columns to
the Customer,
Employee, and
Executive tables.

Whenever an object
changes its role, you
need to copy the
data into the
appropriate table.
It is difficult to
support multiple
roles and still
maintain data
integrity.

When changing
types and/or overlap
between types is
rare.

Comparison

Slide 42

Strategy Advantages Disadvantag
es

When to Use

One table per
class

Easy to understand
because of the one-
to-one mapping.

Supports
polymorphism very
well as you merely
have records in the
appropriate tables
for each type.

Very easy to modify
superclasses and add
new subclasses as
you merely need to
modify/add one
table.

Data size grows in
direct proportion to
growth in the
number of objects.

There are many
tables in the
database, one for
every class (plus
tables to maintain
relationships).
Potentially takes
longer to read and
write data using this
technique.

Ad-hoc reporting on
your database is
difficult, unless you
add views to
simulate the desired
tables.

When there is
significant overlap
between types or
when changing types
is common.

Mapping Object Relationships

Slide 43

We have:

Association

Aggregation

Composition

Recall, Aggregation and composition are special types of
association

All three will be mapped to referential integrity constraints

Mapping Object Relationships

Slide 44

Cardinality

Mapping one-to-one relationships

Mapping one-to-many relationships

Mapping many-to-many relationships

Direction

Unidirectional

Bidirectional

Slide 45

How Relational Database Relationships Are
Implemented

Slide 46

Relationships in relational databases are
maintained through the use of foreign
keys. A foreign key is a data attribute(s)
that appears in one table that may be
part of or is coincidental with the key of
another table. With a one-to-one
relationship the foreign key needs to be
implemented by one of the tables.

How Relational Database Relationships Are
Implemented

Slide 47

To implement a one-to-many relationship you
implement a foreign key from the “one table” to
the “many table”. For example Employee includes
a DivisionPOID column to implement the works in
relationship to Division. You could also choose to
overbuild your database schema and implement a
one-to-many relationship via an associative table,
effectively making it a many-to-many relationship.

How Relational Database Relationships Are
Implemented

Slide 48

To implement many-to-many associations in a
relational database, is to implement what is called
an associative table, an example of which
is EmployeeTask, which includes the combination
of the primary keys of the tables that it associates.

The basic "trick" is that the many-to-many
relationship is converted into two one-to-many
relationships, both of which involve the associative
table.

Slide 49

More Exercises (1)

Slide 50

More Exercises (2)

Slide 51

