
Worklight Assigments

Free-form Class Activities

Overview

• These activities encourage students to exercise
and consolidate their Worklight knowledge

• Some use as a starting point an application built
by Roland Barcia, IBM Distinguished Engineer,
CTO Mobile and WebSphere Foundation

• The application uses Ionic and AngularJS, no
previous knowledge is required

• We start with a skeletal version of the application
and incrementally exploit Worklight

Checkpoint 1

• Create a Worklight project, containing a Hybrid
Application

• Add an Android Environment

• Deploy and run app in Browser Simulator

• Use Browser tools to show console

• Add to your application’s initialisation
– WL.Logger.debug(“some message”)

• Use non-build refresh to verify Logger output in
console

Outline

1. Deploy and Run the Skeleton
– Understand the project structure

2. Worklight Client APIs
– Display simple data items

3. Adapters
– Build adapter, display master/detail

4. Authentication
– Add adapter-based authentication

5. Connection APIs
– Display connection status

6. Offline working
– Cache master/detail data in JSONStore

7. Extra Credit: your own app
– Choose a business domain, design and implement app

Step 1 – The Skeleton App

• Import and verify Data Project (add to Development Server)
– http://localhost:10080/mwdserverstub/rest/accounts/accounts.json

• Import and verify App project
– Login rbarcia/bl0wfish (in initial version, no credentials checked)
– Observe

• Navigation
• Master/Details display for Accounts & Transactions

• Explore code:
– Note: make services visible (next slide)
– Routes, Views, Controllers, Services (see AngularJS next slide after that)
– Consider: in a large project team what division of labour?

• Data display
– How are Error Messages displayed?
– How are lists of data (list of accounts or transactions) displayed?

• Debugging
– Set breakpoint in code, examine values

http://localhost:9081/mwdserverstub/rest/accounts/accounts.json

Services Folder Contents

• Project Explorer View, select down arrow for context menu
• Customize View
• Unselect Services Navigator Content

AngularJS – an emerging framework

• jQuery alone not enough, need a framework

– Dojo has dojox/app playing a similar role

• Key features (find these in the code)

– Index.html: explicit pre-load of all .js files

– app.js: routing from “page” to “page”, loads view
html files, associates controller with page (if any)

– services obtain data, async, so use promise

– Bi-directional mapping between HTML and js data
<div>{{ account.name}}</div>

Step 2- Worklight Client APIs

• Choose one of unpopulated Views

• Amend to display data from WL.Client APIs

– Language

– Environment

Step 3 - Adapters

• Implement HTTP adapter procedures calling
data service

– getAccounts()

– getTransactions(accountId)

• Test adapters in Development Environment

• Replace hard-coded values in client with calls
to adapters (see idiom on next slide)

• Test client

Using results of an async call

• Promise idiom now pervasive in JavaScript

• All service functions here return a promise
busyIndicator.show();
fnReturningPromise().then(function (someData)

{
$scope.accounts = accounts;
$scope.$broadcast('scroll.refreshComplete');
busyIndicator.hide();
$scope.errorMsg = "”;

},
function(error)
{

$scope.errorMsg = "Could Not Load Accounts";
$scope.$broadcast('scroll.refreshComplete');
busyIndicator.hide();

});

Step 4 - Authentication

• Add adapter-based authentication methods to
the adapter

• Configure authentication, apply to adapter
methods

• Determine client behaviour if not
authenticated
– Examine network traffic in browser debug

• Add challenge handler and authentication
code in client

Step 5 – Offline detection

• Display current connection status

• Display status change in response to
connection events

Step 6 – Offline working

• Store data retrieved from Adapter in
JSONStore

• Amend application to query JSONStore if it is
started offline

Extra Credit

• Choose a business domain

– Example: Health Care

• Sketch some use cases

– Example: Request/View Lab Results for Patient

• Design Views / Data

• Design Adapters for notional payloads

• Implement

– Use Dorado Bank as starting point

