Worklight Assigments

Free-form Class Activities

Overview

These activities encourage students to exercise
and consolidate their Worklight knowledge

Some use as a starting point an application built
by Roland Barcia, IBM Distinguished Engineer,
CTO Mobile and WebSphere Foundation

The application uses lonic and AngularlS, no
previous knowledge is required

We start with a skeletal version of the application
and incrementally exploit Worklight

Checkpoint 1

Create a Worklight project, containing a Hybrid
Application

Add an Android Environment
Deploy and run app in Browser Simulator
Use Browser tools to show console

Add to your application’s initialisation
— WL.Logger.debug(“some message”)

Use non-build refresh to verify Logger output in
console

2.

3.

4.

5.

6.

7.

Outline

Deploy and Run the Skeleton
— Understand the project structure
Worklight Client APIs

Display simple data items

Adapters

Build adapter, display master/detail

Authentication

Add adapter-based authentication

Connection APIs

Display connection status

Offline working

Cache master/detail data in JSONStore

Extra Credit: your own app

Choose a business domain, design and implement app

Step 1 — The Skeleton App

Import and verify Data Project (add to Development Server)

— http://localhost:10080/mwdserverstub/rest/accounts/accounts.json
Import and verify App project
— Login rbarcia/blOwfish (in initial version, no credentials checked)

— Observe
* Navigation
* Master/Details display for Accounts & Transactions

Explore code:
— Note: make services visible (next slide)
— Routes, Views, Controllers, Services (see Angularl]S next slide after that)
— Consider: in a large project team what division of labour?
Data display
— How are Error Messages displayed?
— How are lists of data (list of accounts or transactions) displayed?
Debugging
— Set breakpoint in code, examine values

http://localhost:9081/mwdserverstub/rest/accounts/accounts.json

Services Folder Contents

— A — |
L Project Explorer 23 BEg g
Lo s Top Level Elements >
b i =-adapters
V i=-apps Folder Presentation > ® 00 Available Customizations
V¥ i=-DoradoBankApp
¥ = common Select Working Set... S Filters | T Content
> =css Deselect Working Set Select the available extensions to show (unchecked extensions will not display
P (= fonts Edit Active Working Set... content):
P (=~ images # Java Resources Rendering
Y [=js Pac kage Presentation > 4 \.No_rklight Server Rendering
b = controllers ™ 5 Working Sets
— iy CUStomiZE View... || Services Navigator Content
> G libs. |~ Customize View... [N I imiborimiemiiu
] S —— &5 Java Elements
|=| .DS_Store < Link with Editor 4 (_Ionﬁguration File Content
P % app.js T ™ [i)Resources
P [Z] initOptions.js
P & main.js
@:l | Cancel | [OK

* Project Explorer View, select down arrow for context menu
* Customize View

* Unselect Services Navigator Content

Angular]S —an emerging framework

* jQuery alone not enough, need a framework

— Dojo has dojox/app playing a similar role

e Key features (find these in the code)
— Index.html: explicit pre-load of all .js files

— app.js: routing from “page” to “page”, loads view
html files, associates controller with page (if any)

— services obtain data, async, so use promise
— Bi-directional mapping between HTML and js data

<div>{{ account.name}}</div>

Step 2- Worklight Client APIs

* Choose one of unpopulated Views
* Amend to display data from WL.Client APIs

— Language
— Environment

Step 3 - Adapters

Implement HTTP adapter procedures calling
data service

— getAccounts()
— getTransactions(accountld)

Test adapters in Development Environment

Replace hard-coded values in client with calls
to adapters (see idiom on next slide)

Test client

Using results of an async call

* Promise idiom now pervasive in JavaScript
* All service functions here return a promise

busylndicator.show();
fnReturningPromise().then(function (someData)

{
Sscope.accounts = accounts;
Sscope.Sbroadcast('scroll.refreshComplete');
busylndicator.hide();
Sscope.errorMsg ="”;

b

function(error)

{

Sscope.errorMsg = "Could Not Load Accounts";
Sscope.Sbroadcast('scroll.refreshComplete’);
busylndicator.hide();

1)

Step 4 - Authentication

Add adapter-based authentication methods to
the adapter

Configure authentication, apply to adapter
methods

Determine client behaviour if not
authenticated

— Examine network traffic in browser debug

Add challenge handler and authentication
code in client

Step 5 — Offline detection

* Display current connection status

* Display status change in response to
connection events

Step 6 — Offline working

e Store data retrieved from Adapter in
JSONStore

 Amend application to query JSONStore if it is
started offline

Extra Credit

Choose a business domain

— Example: Health Care

Sketch some use cases

— Example: Request/View Lab Results for Patient
Design Views / Data
Design Adapters for notional payloads

mplement
— Use Dorado Bank as starting point

