
Blockchain in-depth: Part 2
Unit 05

V1.0, July 2018

IBM Skills Academy



Learning objectives

Consensus overview

Summary

Hyperledger Fabric 
consensus



3

What you should be able to do

Upon completion of this unit, you should be able to:

• Explain the need for consensus.

• Describe the role of the ordering service.

• List the steps of consensus.

• Explain how transaction endorsement and validation works in Hyperledger Fabric.



Learning objectives

Consensus overview

Summary

Hyperledger Fabric 
consensus



5

Consensus: The process of maintaining a consistent 
ledger

Before After

Ledger

Peer

CONSENSUS

ABC DEF

ABC

ABC ABC

ABC JKLJKL

• Keep all peers up-to-date.
• Fix any peers in error.
• Ignore all malicious nodes.



6

Some examples of consensus algorithms

Proof of stake

Proof of 
elapsed time

Practical 
Byzantine Fault 
Tolerance-based

Proof of work

Kafka / 
Zookeeper

Solo / 
No-ops



7

Consensus algorithms have different strengths and 
weaknesses

Proof of stake

Proof of 
Elapsed Time

Proof of work

Requires validators to solve difficult cryptographic puzzles.
Pros: Works in untrusted networks.
Cons: Uses much energy, and slow to confirm transactions.
Example usage: Bitcoin and Ethereum

Requires validators to hold currency in escrow.
Pros: Works in untrusted networks.
Cons: Requires intrinsic (crypto)currency, and the ”Nothing at stake” problem.
Example usage: Nxt

Wait time in a trusted execution environment randomizes block generation.
Pros: Efficient.
Cons: Requires processor extensions.
Example usage: Hyperledger Sawtooth



8

Consensus algorithms have different strengths and 
weaknesses

PBFT-based

Solo / 
No-ops

Kafka / 
Zookeeper

Validators apply received transactions without consensus.
Pros: Quick, and suited to development.
Cons: No consensus, which can lead to divergent chains.

Practical Byzantine Fault Tolerance (PBFT) implementations
Pros: Reasonably efficient and tolerant against malicious peers.
Cons: Validators are known and connected.

Ordering service distributes blocks to peers.
Pros: Efficient and fault-tolerant.
Cons: Does not guard against malicious activity.



9

Consensus tradeoffs: Latency versus scalability 



10

Consensus tradeoffs: Permissioned versus 
permissionless



11

Consensus tradeoffs: Support for smart contracts

Smart contracts and consensus algorithms co-operate to build trust among the blockchain network. Supporting smart contracts 
has important implications on consensus.

Trust model:
• May be determined by the consensus protocol.
• May be driven by the requirements of the smart contracts.
• Trust in development may be required.

Confidentiality: Consensus should allow the dissemination of contract code and the state to a subset of peers in the network.

Performance:
• Limit execution to sequential paradigms.
• Alternatively, support parallelism.

Determinism:
• Limit the programming model to ensure that peers do not diverge.
• Alternatively, handle determinism at the consensus level.



Learning objectives

Consensus overview

Summary

Hyperledger Fabric 
consensus



13

Hyperledger consensus design principles

All Hyperledger projects follow a modular, token-neutral approach, with a focus on interoperability and security:
• Consensus may be implemented in different ways to target different network requirements.
• A generalized reference architecture for consensus is used. It can be used by any Hyperledger project.

The assumption is that business blockchain networks operate in an environment of partial trust, that is, there are no anonymous 
miners.

Consensus must depend on smart contracts for transaction validation.

Hyperledger frameworks reach consensus by logically separating two activities:
• Ordering of transactions 
• Validating transactions 

By logically separating these activities:
• Any Hyperledger framework can work with any Hyperledger consensus module.
• Separation of concerns enables better performance and scalability of the network.



14

Hyperledger Fabric consensus implementation

Consensus is achieved by using the following transaction flow:

Endorse Order Validate

• Simulate transactions.
• Collect results.
• Collect endorsements.

• Order transactions.
• Create blocks.
• Broadcast blocks.

• Validate endorsements.
• Eliminate invalid 

transactions.
• Update the ledger.



15

6. Committing peers (all peers in the channel) validate 
each transaction in the block, and commit the block.

Transaction lifecycle

O

O O

O Peer network

Peer n…Peer 1
Endorser &
committer

Committer
Peer 2

Endorser &
committer

*HFC = Hyperledger Fabric Client

OrderEndorse Validate

1. Client requests 
endorsement of 
the proposal.

Client application

SDK (HFC)*

2. Endorsing peers decide 
that the proposal is valid.

3. Endorsers send the 
proposal response.

4. Client submits 
the transaction.

5. Ordering service creates the 
block of transactions, and sends 
it to all the peers in the channel.

7. Peers emit notifications.

Peer 1
Endorser &
committer

Peer 2
Endorser &
committer

Peer 3
Endorser &
committer

Endorsing peers for 
smart contract



16

Endorsing peers receive a transaction proposal for endorsement, 
execute the proposal, and respond granting or denying endorsement. 
Endorsing peers must hold smart contracts.

Endorse Who is involved

Clients propose the transaction to the peers and collect their 
endorsement signatures on a specific policy.

Before submitting a transaction…

C S
D
K



17

Endorse Endorsement policies

An endorsement policy describes the conditions by which a transaction can be trusted. A transaction can be 
considered valid only if it is endorsed according to its policy. Endorsement policies are defined at chaincode 
instantiation on a specific channel.

Examples of policies:

• Request one signature from all three principals:

AND(‘Manufacturer.member', 'Regulator.member’, ‘Leasing.member')

• Request one signature from either one of the two principals:

OR(‘Manufacturer.member', ‘Leasing.member')

• Request either one signature from a member of the Manufacturer MSP, or one signature from a member of the 
Regulator MSP and one signature from a member of the Authority MSP:

OR(‘Manufacturer.member', AND('Regulator.member', ‘Leasing.member'))



18

Endorser Ledger

Smart contract 
(chaincode)

Endorsement 
policy

Application

The application proposes a transaction.

Endorsement policy:
• “E0, E1, and E2 must sign”

The client application submits a 
transaction proposal for smart contract 
A. It must target the required peers {E0, 
E1, and E2}.

Step 1/7: Propose a transaction

E0

E1

E2

Hyperledger Fabric Network

P

A B

A B

A B

C S
D
K

Client

Endorse

KEY



19

Step 2/7: Execute the proposal

The endorsers execute the proposals.

E0, E1, and E2 each execute the 
proposed transaction. None of these 
executions update the ledger.

Transactions can be signed and 
encrypted.

Hyperledger Fabric Network

E0

E1

E2
P

A B

A B

A B

C S
D
K

Client

Endorse

Endorser Ledger

Smart contract 
(chaincode)

Endorsement 
policy

Application

KEY



20

Inside the endorsing peer

Each execution captures the set of read and written data, which is called the RW set, which now flows 
in Hyperledger Fabric. 

Endorsement System Chaincode (ESCC) signs the proposal response on the endorsing peer.

The RW sets are signed by each endorser, and also include each record’s version number.

Chaincode ESCC

Propose - Execute - Respond

Sign

Endorsing peer

Endorse



21

Step 3/7: Proposal response

The application receives responses.

RW sets are asynchronously returned to 
the application.

Hyperledger Fabric Network

E0

E1

E2
P

A B

A B

A B

C S
D
K

Client

Endorse

Endorser Ledger

Smart contract 
(chaincode)

Endorsement 
policy

Application

KEY



22

Endorse

Transaction lifecycle: Endorse

*HFC = Hyperledger Fabric Client

Endorse

1. Client requests 
an endorsement 
of the proposal.

Client application

SDK (HFC)*

2. Endorsing peers decide 
that the proposal is valid.

3. Endorsers send 
the proposal 
response.

Peer 1
Endorser &
committer

Peer 2
Endorser &
committer

Peer 3
Endorser &
committer

Endorsing peers for 
smart contract



23

Who is involved

Clients submit the transactions to orderers to broadcast them to the 
peers.

When submitting a transaction:

C S
D
K

Orderers or ordering-service nodes receive transactions from 
clients, form blocks, and deliver them to the peers.

Order



24

The ordering service

The ordering service packages transactions into blocks to be delivered to peers while ensuring the following:
• Agreement: A block is delivered with the same sequence number to all peers.
• Hash chain integrity: For all peers, the current block contains the hash of the previous one.
• Sequential Delivery: Each block is delivered sequentially to every peer. No block is skipped or missed.
• No transaction creation: Blocks are composed only of transactions that are broadcast by clients.
• Eventual validity: If a client broadcasts a transaction, it eventually is delivered in a block.

The ordering service is run by specialized nodes that:
• Do not hold smart contracts.
• Do not hold endorsement policies.
• Do not need to store the world state to work.
• Do not update the ledger by themselves.
• Can see all transactions by default, but do not need to inspect the details of a transaction.

The ordering service may perform access control to check whether clients are allowed to broadcast a 
transaction on the channel.

Order



25

Different configuration options for the ordering service 
include:
• SOLO: Single node for development
• Kafka: Crash fault tolerant consensus:

• Three nodes minimum.
• Odd number of nodes are preferred.

Ordering service

O

O O

O

C0

C1

The ordering service: Consensus protocolsOrder



26

Endorser Ledger

Smart contract 
(chaincode)

Endorsement 
policy

Application Ordering 
node

Step 4/7: Order transaction

Responses are submitted for ordering.

The client submits endorsed responses 
as a transaction to be ordered.

Ordering happens across the 
Hyperledger Fabric in parallel with 
transactions that are submitted by other 
applications.

(Other clients)

Hyperledger Fabric Network

Ordering service

O

O O

O

E0

E1

E2
P

A B

A B

A B

C S
D
K

Client

Order

KEY



27

Hyperledger Fabric Network

Ordering-Service

Step 5/7: Deliver the transaction

The orderer delivers to the committing peers.

The ordering service collects transactions 
for a channel into proposed blocks for 
distribution to peers. Blocks are delivered 
on a channel basis.

Peers can deliver to other peers in a 
hierarchy (not shown).

O

O O

O

*

E0

E1

E2
P

P4P3
A B

A B

A B

A D

C S
D
K

Client

Order

Endorser Ledger

Smart contract 
(chaincode)

Endorsement 
policy

Application Ordering 
node

KEY



28

Transaction lifecycle: Order

O

O O

O Peer network

Peer n…Peer 1
Endorser &
committer

Committer
Peer 2

Endorser &
committer

*HFC = Hyperledger Fabric Client

OrderEndorse

1. Client requests 
an endorsement 
of the proposal.

Client application

SDK (HFC)*

2. Endorsing peers decide 
that the proposal is valid.

3. Endorsers send the 
proposal response.

4. Client submits 
the transaction.

5. Ordering service creates the 
block of transactions, and sends 
it to all the peers in the channel.

Peer 1
Endorser &
committer

Peer 2
Endorser &
committer

Peer 3
Endorser &
committer

Endorsing peers for 
smart contract



29

Who is involved

Clients who registered are notified about any new blocks and 
transactions that are delivered on the channel.

When receiving a new block…

C S
D
K

Validate

Committing peers (including endorsing peers) run validation and 
update their copy of the blockchain and world state.
Committing peers may hold smart contracts, but they do not execute 
them at this stage.

...after transaction validation…



30

Inside the committing peer

On every committing peer, Validation System Chaincode (VSCC):
• Validates the endorsements against the endorsement policy.
• Checks that the RW sets are still valid for current world state.

Validated transactions are applied to the world state and retained on the ledger.
Invalid transactions are also retained on the ledger, but do not update world state.

VSCC Ledger

Validate - Commit

Policy

Committing peer

P

Validate



31

Hyperledger Fabric Network

Ordering service

Step 6/7: Validate the transaction

Committing peers validate transactions.

O

O O

O

E0

E1

E2
P

P4P3
A B

A B

A B

A D* * *

*

*

C S
D
K

Client

Validate

Endorser Committing
peer

Smart contract 
(chaincode)

Endorsement 
policy

Application Ordering 
node

Ledger

KEY



32

Hyperledger Fabric Network

Ordering-Service

Step 7/7: Notify the transaction

The committing peers notify the applications.

Applications can register to be notified 
when transactions succeed or fail, and 
when blocks are added to the ledger.

Applications are notified by each peer to 
which they are connected.

!

!

!

! !

O

O O

O

E0

E1

E2
P

P4P3
A B

A B

A B

A D

!

Endorser Committing
peer

Smart contract 
(chaincode)

Endorsement 
policy

Application Ordering 
node

Ledger

KEY

C S
D
K

Client

ValidateValidate



33

6. The committing peers (all the peers in the channel) 
validate each transaction in the block, and commit the 
block.

Transaction lifecycle: Validate

O

O O

O Peer network

Peer n…Peer 1
Endorser &
committer

Committer
Peer 2

Endorser &
committer

*HFC = Hyperledger Fabric Client

OrderEndorse Validate

1. Client requests 
an endorsement 
of the proposal.

Client application

SDK (HFC)*

2. Endorsing peers decide 
that the proposal is valid.

3. Endorsers send the 
proposal response.

4. Client submits 
the transaction.

5. The ordering service creates the 
block of transactions, and sends it 
to all the peers in the channel.

7. Peers emit notifications.

Peer 1
Endorser &
committer

Peer 2
Endorser &
committer

Peer 3
Endorser &
committer

Endorsing peers for 
smart contract



34

Hyperledger Fabric consensus: Putting it all together

https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf

https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf


Learning objectives

Consensus Overview

Summary

Hyperledger Fabric 
consensus



36

Unit summary
This unit described consensus algorithms and the Hyperledger Fabric approach to consensus:

• The objective of consensus algorithms is to maintain a consistent ledger.

• Different consensus algorithms have pros and cons; there is no “one-size-fits-all”.

• The Hyperledger approach to consensus is modular and focuses on enterprise blockchain.

• The key steps in Hyperledger Fabric Consensus are endorse, order, and validate.

• The key elements that are involved in a transaction are clients, peers, orderers, smart contract, and 
endorsement policies.

• Transactions are executed by peers only after the transaction proposals are submitted for 
endorsement.

• Specialized nodes take care of ordering transactions and creating blocks.

• Validation is based on a read/write set and endorsement signatures.



43

Exercise objectives

During this exercise, you will apply Hyperledger Fabric network concepts to:

• Start a sample.
• Review the existing organizations and channels.
• Add an organization and peer.
• Add a peer to an existing channel.
• Install and instantiate the Hyperledger Fabric chaincode.
• Review the changes by querying the existing data on the ledger before adding the new peer.
• [Optional] Deploy the whole network on IBM Cloud by using Kubernetes.



44

References
For more information about the topics that are covered in this unit, see the following resources:

• Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains
• Hyperledger Architecture Paper, Volume 1
• http://hyperledger-fabric.readthedocs.io/en/release-1.1

• https://developer.ibm.com/courses/all/ibm-blockchain-foundation-developer/

• https://developer.ibm.com/academic/resources/blockchain-educator-guide/

• https://allquantor.at/blockchainbib/pdf/vukolic2015quest.pdf

• https://arxiv.org/abs/1801.10228v1.pdf

• https://www.youtube.com/watch?v=8kRc2895uMY

• https://www.youtube.com/watch?v=DqtzxJP6Y9k

• https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf

https://arxiv.org/pdf/1801.10228v1.pdf
https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf
http://hyperledger-fabric.readthedocs.io/en/release-1.1
https://developer.ibm.com/courses/all/ibm-blockchain-foundation-developer/
https://developer.ibm.com/academic/resources/blockchain-educator-guide/
https://allquantor.at/blockchainbib/pdf/vukolic2015quest.pdf
https://arxiv.org/abs/1801.10228
https://www.youtube.com/watch?v=8kRc2895uMY
https://www.youtube.com/watch?v=DqtzxJP6Y9k
https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf


Thank you.
IBM Skills Academy

www.ibm.com/blockchain

developer.ibm.com/blockchain

www.hyperledger.org

© Copyright IBM Corporation 2017. All rights reserved. The information contained in these 
materials is provided for informational purposes only, and is provided AS IS without warranty 
of any kind, express or implied. Any statement of direction represents IBM's current intent, is 
subject to change or withdrawal, and represents only goals and objectives. IBM, the IBM 
logo, and other IBM products and services are trademarks of the International Business 
Machines Corporation, in the United States, other countries or both. Other company, product, 
or service names may be trademarks or service marks of others.



© Copyright IBM Corporation 2018. All rights reserved. The information contained in these 
materials is provided for informational purposes only, and is provided AS IS without warranty 
of any kind, express or implied. Any statement of direction represents IBM's current intent, is 

subject to change or withdrawal, and represents only goals and objectives. IBM, the IBM 
logo, and other IBM products and services are trademarks of the International Business 

Machines Corporation, in the United States, other countries or both. Other company, product, 
or service names may be trademarks or service marks of others.


