
Introducing
 JavaServer Faces

JavaServer Faces (JSF) has been dubbed the next big thing in Java web programming. With JSF, you
use web components on your web pages and capture events caused by user actions. In the near future,
Java tools will support this technology. Developing web applications will be similar to the way we
write Swing applications today: dragging and dropping controls and writing event listeners. This article
is an introduction to JSF. It highlights the most important aspect of JSF: JSF applications are event-
driven. Also, it offers a sample JSF application that illustrates the event-drivenness of JSF. To
understand this article, you need to be familiar with servlets, JSP, JavaBeans, and custom tag libraries.

First of all, a JSF application is a servlet/JSP application. It has a deployment descriptor, JSP pages,
custom tag libraries, static resources, et cetera. What makes it different is that a JSF application is
event-driven. You decide how your application behaves by writing an event listener class. Here are
the steps you need to take to build a JSF application:

 Author JSP pages, using JSF components that encapsulate HTML elements.
 Write a JavaBean as the state holder of user-input and component data.
 Write an event listener that determines what should happen when an event occurs, such as when

the user clicks a button or submits a form. JSF supports two events: ActionEvent and
ValueChangedEvent. ActionEvent is fired when the user submits a form or clicks a
button, and ValueChangedEvent is triggered when a value in a JSF component changes.

Now, let's take a look at how JSF works in detail.

JavaServer Faces Technology Benefits

One of the greatest advantages of JavaServer Faces technology is that it offers a clean separation
between behavior and presentation. Web applications built using JSP technology achieve this separation
in part. However, a JSP application cannot map HTTP requests to component-specific event handling
nor manage UI elements as stateful objects on the server, as a JavaServer Faces application can.
JavaServer Faces technology allows you to build web applications that implement the finer-grained
separation of behavior and presentation that is traditionally offered by client-side UI architectures.

The separation of logic from presentation also allows each member of a web application development
team to focus on his or her piece of the development process, and it provides a simple programming
model to link the pieces. For example, page authors with no programming expertise can use JavaServer
Faces technology UI component tags to link to server-side objects from within a web page without
writing any scripts.

Another important goal of JavaServer Faces technology is to leverage familiar UI-component and web-
tier concepts without limiting you to a particular scripting technology or markup language. Although
JavaServer Faces technology includes a JSP custom tag library for representing components on a JSP
page, the JavaServer Faces technology APIs are layered directly on top of the Servlet API, as shown in
This layering of APIs enables several important application use cases, such as using another

presentation technology instead of JSP pages, creating your own custom components directly from the
component classes, and generating output for various client devices.

Most importantly, JavaServer Faces technology provides a rich architecture for managing component
state, processing component data, validating user input, and handling events.

How JSF Works

JSP pages are the user interface of a JSF application. Each page contains JSF components that represent
web controls, such as forms, input boxes, and buttons. Components can be nested inside of another
component; an input box can reside inside a form. Each JSP page is represented by its component tree.
JavaBeans store the data from user requests.

Here is the interesting part: every time the user does something, such as clicking a button or submitting
a form, an event occurs. Event notification is then sent via HTTP to the server. On the server is a web
container that employs a special servlet called the Faces \servlet. The Faces servlet, represented by
thejavax.faces.webapp.FacesServlet class, is the engine of all JSF applications. Each JSF
application in the same web container has its own Faces servlet. Another important object is
javax.faces.context.FacesContext, which encapsulates all necessary information related
to the current request.

The Life Cycle

The JSF specification defines six distinct phases.

1. Restore View phase
2. Apply Request Values phase
3. Process Validations phase
4. Update Model phase
5. Invoke Application phase
6. Render Response phase

As shown in the above figure, the normal flow of control is shown with solid lines; alternative
flows are shown with dashed lines.

The
Restore View phase retrieves the component tree for the requested page if it was displayed
previously or constructs a new component tree if it is displayed for the first time. If the page
was displayed previously, all components are set to their prior state. This means that JSF
automatically retains form information.
For example, when a user posts illegal data that are rejected during decoding, the old inputs

are redisplayed so that the user can correct them.

If the request has no query data, the JSF implementation skips ahead to the Render
Response phase. This happens when a page is displayed for the first time. Otherwise, the
next phase is the
Apply Request Values phase. In this phase, the JSF implementation iterates over the
component objects in the component tree. Each component object checks which request
values belong to it and stores them.

In the
Process Validations phase, the submitted string values are first converted to “local values,”
which can be objects of any type. When you design a JSF page, you can attach validators
that perform correctness checks on the local values. If validation passes, the JSF life cycle
proceeds normally. However, when conversion or validation errors occur, the JSF
implementation invokes the Render Response phase directly, redisplaying the current page
so that the user has another chance to provide correct inputs.

After the converters and validators have done their work, it is assumed that it is safe to update
the model data. During the
Update Model phase, the local values are used to update the beans that are wired to the
components.
In the
Invoke Application phase, the action method of the button or link component that caused
the form submission is executed. That method can carry out arbitrary application processing.
It returns an outcome string that is passed to the navigation handler. The navigation handler
looks up the next page.
Finally, the
Render Response phase encodes the response and sends it to the browser. When a user
submits a form, clicks on a link, or otherwise generates a new request, the cycle starts anew.
You have now seen the basic mechanisms that make the JSF magic possible. In the following
chapters, we examine the various parts of the life cycle in more detail.

JSF and Ajax

JSF is often used together with Ajax, a Rich Internet application technology. Ajax is a combination of
technologies that make it possible to create rich user interfaces. The user interface components in
Mojarra (the JSF reference implementation[7]) and Apache MyFaces were originally developed for
HTML only, and Ajax had to be added via JavaScript. This has changed, however:

Because JSF supports multiple output formats, Ajax-enabled components can easily be added to enrich
JSF-based user interfaces. The JSF 2.0 specification provides built in support for Ajax by standardizing
the Ajax request lifecycle, and providing simple development interfaces to Ajax events, allowing any
event triggered by the client to go through proper validation, conversion, and finally method
invocation, before returning the result to the browser via an XML DOM update.

	Introducing
	JavaServer Faces
	JavaServer Faces Technology Benefits
	How JSF Works
	The Life Cycle

