
© Copyright IBM Corp. 2018. All rights reserved. 203

Chapter 7. Exercise 7: Developing a client
application for Hyperledger
Fabric

The Hyperledger Fabric Client SDK makes it easy to use APIs to interact with a Hyperledger
Fabric blockchain.

Applications can be developed to interact with the blockchain network on behalf of the
users. The Hyperledger Fabric SDK for Node.js product is designed in an object-oriented
programming style.

This exercise explores developing applications with the Hyperledger Fabric Client SDK. This
exercise describes how Fabric applications work and interact with a Hyperledger Fabric
blockchain.

7

204 Blockchain Developer Exercises Guide

7.1 Getting started

This section provides an overview of the exercise, the skills that you will gain by performing
the exercise, the prerequisites for this exercise, and the results that you can expect after
completing this exercise

7.1.1 What this exercise is about

The Hyperledger Fabric SDK for Node.js product provides APIs to interact with a Hyperledger
Fabric blockchain. The fabric-client package encapsulates the APIs to interact with Peers
and Orderers of the Fabric network to install and instantiate chaincodes, send transaction
invocations, and perform chaincode queries.

This exercise shows you how to develop an application in Node.js that uses the Hyperledger
Fabric Client SDK to interact with the Hyperledger Fabric network and interfaces with a
front-end web application that is written in Angular 2. Figure 7-1 provides an overview of the
components that are used in this exercise and their role.

Figure 7-1 Client SDK provides the APIs to interact with Hyperledger Fabric

In this exercise, you will use some of these APIs. As shown in Figure 7-1, the Node.js
application acts as a server between the front-end web application and the blockchain
business network.

This exercise will cover the following topics:

! Enabling the front-end web application to interact with the chaincode through the Node.js
server and the Fabric Client SDK.

! Adding a function in the Node.js server that uses Fabric SDK APIs and tests the
transaction flow between the web application and the chaincode.

7.1.2 What you should be able to do

After completing this exercise, you should be able to:

! Use the Fabric Client SDK for Node.js to interact with a Fabric business network.

! Develop an application to submit transactions to the blockchain.

! Test the transaction flows that take place when a transaction is submitted.

Chapter 7. Exercise 7: Developing a client application for Hyperledger Fabric 205

7.1.3 Prerequisites

Enable cross-origin resource sharing (CORS) in Firefox. Ensure that the icon in your browser
is green, as shown in Figure 7-2. If the icon is red, click the Cors E icon to enable CORS.

Figure 7-2 Cors E icon

7.1.4 Expected results

By the end of this exercise, you will have a running Angular 2 web application that can add a
vehicle, query existing vehicles, change the owners of vehicles, and reflect all these actions in
the ledger.

Note: CORS is needed for Mozilla (Firefox) to enable communications between
applications running on different ports. If CORS is not enabled, responses from the Node.js
server to the Angular application will be blocked.

206 Blockchain Developer Exercises Guide

7.2 Architecture

Figure 7-3 provides a high-level view of the role of the Fabric Client SDK used by the Node.js
application in this exercise and the developer's tasks.

Figure 7-3 Transactional mechanics that take place during a standard asset exchange

In Figure 7-3:

! The developer develops and deploys chaincode that is written in Go or JavaScript. You
learned about this process in Chapter 6, “Exercise 6: Developing chaincode for
Hyperledger Fabric” on page 159.

! The developer develops an application that uses the Fabric Client SDK that is available for
Node.js and Java.

! The application queries and invokes smart contract functions through the Fabric Client
SDK.

! These function calls are processed by the business logic in the smart contract's
chaincode.

! The application can access blockchain information through the Fabric Client APIs.

Figure 7-4 on page 207 shows an overview of the transaction steps. It highlights how the
Fabric Client SDK in the intermediate Node.js server interfaces with both the front-end web UI
that is represented by the Angular application, and the peers and orderer in the blockchain
network.

Chapter 7. Exercise 7: Developing a client application for Hyperledger Fabric 207

Figure 7-4 Transaction steps

Figure 7-4 shows the following flow:

1. The front-end Angular web application sends a request and corresponding data to the
Node.js server.

2. The Node js server calls the Fabric Client SDK APIs to send the request to the endorsing
peers in the blockchain business network. The peers are responsible for receiving a
transaction proposal for endorsement, and respond by granting or denying endorsement.

3. The endorsing peers return a response to the Node.js server. Fabric Client SDK APIs are
used to receive the response, which can have its transactions endorsed or rejected.

4. If the transaction is endorsed by endorsing peers, the Node.js application uses SDK APIs
to send the endorsed transaction to the orderer.

5. The orderer collects transactions into proposed blocks for distribution to committing peers
that are responsible for committing transactions.

6. After the transaction is committed, the front-end application is notified of the results, that
is, the transaction succeeded or failed, and whether blocks were added to the ledger.

7.3 Exercise instructions

In this exercise, you will accomplish the following tasks:

1. Register and enroll users.

2. Run the sample application.

3. Modify the Node.js sample application to add the changeOwner function.

4. Test the changes to the application.

5. Clean up the environment.

Before you start this exercise, enable cross-origin resource sharing (CORS) in Firefox.
Ensure that the icon in your browser is green, as shown in Figure 7-2 on page 205. If the icon
is red, click the Cors E icon to enable CORS.

208 Blockchain Developer Exercises Guide

Figure 7-5 Cors E icon

Note: CORS is needed for Mozilla (Firefox) to enable communications between
applications running on different ports. If CORS is not enabled, responses from the Node.js
server to the Angular application will be blocked.

Note: The commands you will run in this exercise are in a text file in your VM. Open the
text file to copy and paste each command in your terminal session. To find the text file for
each exercise, double-click the File icon and navigate to
/Blockchain_Redbook_Application/ex-commands. Open the text file for this exercise.

Chapter 7. Exercise 7: Developing a client application for Hyperledger Fabric 209

7.3.1 Registering and enrolling users

In this section, you verify that the chaincode is running in the Fabric network. Then, you
register the Admin user and the user that will sign the transactions to be written to the
blockchain.

Perform the following steps:

1. Confirm that your chaincode is running. In a new terminal window, enter the following
command:

docker ps --format 'table {{.Names}} \t {{.Status}}'

You should see an output similar to the following (the order of the containers and the
version in dev-peer0 might differ):

NAMES STATUS
dev-peer0.org1.example.com-vehicle-chaincode-go-1.0 Up 2 minutes
cli Up 2 minutes
peer0.org1.example.com Up 2 minutes
couchdb Up 2 minutes
ca.example.com Up 2 minutes
orderer.example.com Up 2 minutes

2. Change to the directory of the sample application. In a new terminal window, run the
following command:

cd ~/Blockchain_Redbook_Application/Fabric/Exercise7/Front-End/Vehicle-app

3. Register the Admin user and store the credentials in the .hfc-key-store folder.

The registerAdmin.js invokes a certificate signing request (CSR) and then outputs an
ecert and key material into a newly created folder at the root of this project. The folder
name is hfc-key-store.

Run the following command:

node registerAdmin.js

You should receive an output similar to the following output (your certificate will be
different):

Store path:/home/user/.hfc-key-store
Successfully enrolled admin user "admin"
Assigned the admin user to the fabric client
::{"name":"admin","mspid":"Org1MSP","roles":null,"affiliation":"","enrollmentSe

Note: If you do not see
dev-peer0.org1.example.com-vehicle-chaincode-go-1.0 (the version
might differ), run the following commands to start the chaincode:

cd ~/fabric-tools
./stopFabric.sh
./teardownFabric.sh

cd ~/Blockchain_Redbook_Application/Fabric/Exercise7
./startFabric.sh

Then perform step 1 again.

Note: If you receive an error, repeat the steps in the previous note.

210 Blockchain Developer Exercises Guide

cret":"","enrollment":{"signingIdentity":"478bc0006737225e0510890a8887a4627a813
6f0fe8cc540b2f7a2d79d6ab709","identity":{"certificate":"-----BEGIN
CERTIFICATE-----\nMIICATCCAaigAwIBAgIUWsQlJksiy1NmlkLGOea+Nva12WEwCgYIKoZIzj0EA
wIw\nczELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDVNh\nbiBGcmFu
Y2lzY28xGTAXBgNVBAoTEG9yZzEuZXhhbXBsZS5jb20xHDAaBgNVBAMT\nE2NhLm9yZzEuZXhhbXBsZ
S5jb20wHhcNMTgwNTE0MjA0NzAwWhcNMTkwNTE0MjA1\nMjAwWjAhMQ8wDQYDVQQLEwZjbGllbnQxDj
AMBgNVBAMTBWFkbWluMFkwEwYHKoZI\nzj0CAQYIKoZIzj0DAQcDQgAEnxlypM2J8+G4DqAcDt7jgOc
vFTdOM/iI2aVtw3GS\npIfcemA8C+TCjl0WtaJIt5Tig+b5CqqzivIyDSLDtadhD6NsMGowDgYDVR0P
AQH/\nBAQDAgeAMAwGA1UdEwEB/wQCMAAwHQYDVR0OBBYEFH4f/UAkzVoKGdt0PyTZ4zpd\nmRXtMCs
GA1UdIwQkMCKAIEI5qg3NdtruuLoM2nAYUdFFBNMarRst3dusalc2Xkl8\nMAoGCCqGSM49BAMCA0cA
MEQCIFPjWIbRABamUT6vdDMgS43QPozYG1XxKzy/Pmmuser@

4. Register and enroll a new user (user1). This user will be the user that signs all the
transactions for querying and updating the ledger. Run the following command:

node registerUser.js

You should receive the following output:

Store path:/home/user/.hfc-key-store
Successfully loaded admin from persistence
Successfully registered user1 - secret:vtoiKWkhhPiZ
Successfully enrolled member user "user1"
User1 was successfully registered and enrolled and is ready to interact with
the fabric network

Similar to the admin enrollment, this program invokes a CSR and outputs the keys and
ecert into the hfc-key-store subdirectory. Now, you have identity material for two
separate users, that is, the admin and the new user user1.

7.3.2 Running the sample application

In this section, you run the sample application and create a vehicle by using the existing code.

Perform the following steps:

1. Start the Node.js application by running the following command in a terminal window:

npm start

You will receive the following message at the end of your output:

Live on port:8000

Now, you have a running Node.js server that is listening on localhost:8000.

2. Start the Angular web application by running the following commands in a new terminal
window:

cd ~/Blockchain_Redbook_Application/Fabric/Exercise7/Front-End/Angular2/

npm start

Your output should be similar to the following:

> Car-Manufacture-App@0.0.0 start
/home/user/Blockchain_Redbook_Application/Fabric/Exercise7/Front-End/Angular2
> ng serve

Note: The Admin user issues the registration and enrollment calls for the new user.

Chapter 7. Exercise 7: Developing a client application for Hyperledger Fabric 211

The --missing-translation parameter will be ignored because it is only
compatible with Angular version 4.2.0 or higher. If you want to use it, please
upgrade your Angular version.
** NG Live Development Server is listening on localhost:4200, open your browser
on http://localhost:4200/ **
 28% building modules 157/200 modules 43 active
...es/core-js/modules/_a-number-value.jswebpack: wait until bundle finished: /
Date: 2018-05-14T21:02:16.230Z

Hash: 289d31e4626e573f193d
Time: 53159ms
chunk {inline} inline.bundle.js (inline) 3.85 kB [entry] [rendered]
chunk {main} main.bundle.js (main) 48.7 kB [initial] [rendered]
chunk {polyfills} polyfills.bundle.js (polyfills) 864 kB [initial] [rendered]
chunk {styles} styles.bundle.js (styles) 41.5 kB [initial] [rendered]
chunk {vendor} vendor.bundle.js (vendor) 9.32 MB [initial] [rendered]
webpack: Compiled successfully.

3. Run the web application. Open the browser on localhost:4200, as shown in
Figure 7-6.

Figure 7-6 Web application landing page

4. To add a vehicle, click Create (Add Asset), as shown in Figure 7-7 on page 212.

212 Blockchain Developer Exercises Guide

Figure 7-7 Create Vehicle web page

A Create Vehicle form with pre-loaded data is displayed.

5. Change the value of Colour from Red to Blue and click Save.

6. Return to the terminal window that you opened to run the Node.js application. The
transaction has been submitted.

Your output should be similar to the following:

Create New Vehicle
['1', 'Car Model', 'Blue', '1212121212', 'New Cairo', 'Ahmed']
Store path:/home/BlockchainUser/.hfc-key-store
Successfully loaded user1 from persistence
Assigning transaction_id:
b2f449170939213d1115aee9d4a98b55d8717279b9bc3a66a7d129b77b306355
Transaction proposal was good
Successfully sent Proposal and received ProposalResponse: Status - 200, message
- "OK"
info: [EventHub.js]: _connect - options {}
The transaction has been committed on peer localhost:7053
Send transaction promise and event listener promise have completed
Successfully sent transaction to the orderer.
Successfully committed the change to the ledger by the peer

7.3.3 Modifying the Node.js sample application to add the changeOwner
function

In this section, you add a function that is called changeOwner to the Node.js sample
application. You will build the function by pasting the code snippets after you understand the
purpose of the code.

Note: Expect no results in the web UI.

Chapter 7. Exercise 7: Developing a client application for Hyperledger Fabric 213

Perform the following steps:

1. Stop the Node.js application by pressing Ctrl + C in the terminal window that is running
the Node.js server.

2. Stop the web application by pressing Ctrl + C in the terminal window that is running the
Angular application.

3. Edit the controller.js file by running the following commands:

cd ~/Blockchain_Redbook_Application/Fabric/Exercise7/Front-End/Vehicle-app
code controller.js

4. After the closing brace of the getVehicle function, add a comma (,) to start a function, as
shown in Figure 7-8.

Figure 7-8 Adding the changeOwner function (1 of 9)

5. After line 263 (or equivalent line number for you) add the following lines of code to start the
new function (changeOwner):

changeOwner: function(req, res){
 // add the following steps here
 }

Notes:

! For the complete listing of the code created in this exercise, see “Code solutions” on
page 226.

! The comments in the figures in this section are not included in the code snippets
provided in the bc-dev-ex07commands.txt file and in the complete code listing.

214 Blockchain Developer Exercises Guide

6. Inside this function, add the following lines of code to set up a connection to Hyperledger
Fabric by creating a new instance of channel, peer, and orderer:

 console.log("changing Owner");
 var array = req.params.holder.split("-");

var key = array[0]
var holder = array[1];

 var fabric_client = new Fabric_Client();
var channel = fabric_client.newChannel('mychannel');
var peer = fabric_client.newPeer('grpc://localhost:7051');
channel.addPeer(peer);
var order = fabric_client.newOrderer('grpc://localhost:7050')
channel.addOrderer(order);

 var member_user = null;
var store_path = path.join(os.homedir(), '.hfc-key-store');
console.log('Store path:'+store_path);

var tx_id = null;

Your code should look like Figure 7-9.

Figure 7-9 Adding the changeOwner function (2 of 9)

7. Add the following lines of code to set up the client object with state and crypto store.

This code creates a CryptoKeyStore, which is used to store sensitive information in
persistent storage, such as authenticated user's private keys, certificates, and more.

The CryptoKeyStore is assigned to a CryptoSuite, which is a suite of crypto algorithms
that is used by the SDK to perform digital signing, encryption/decryption, and secure
hashing.

Fabric_Client.newDefaultKeyValueStore({ path: store_path
}).then((state_store) => {
fabric_client.setStateStore(state_store);
var crypto_suite = Fabric_Client.newCryptoSuite();
var crypto_store = Fabric_Client.newCryptoKeyStore({path: store_path});
crypto_suite.setCryptoKeyStore(crypto_store);
fabric_client.setCryptoSuite(crypto_suite);

Chapter 7. Exercise 7: Developing a client application for Hyperledger Fabric 215

Your code should look like Figure 7-10.

Figure 7-10 Adding the changeOwner function (3 of 9)

Now, the client can use a CryptoSuite to sign and hash.

8. Add the following lines of code to add the user that you enrolled and registered in 7.3.1,
“Registering and enrolling users ” on page 209. This user will sign all the transactions. If
the user is not found, you probably forgot to run registerUser.js.

return fabric_client.getUserContext('user1', true);
}).then((user_from_store) => {
if (user_from_store && user_from_store.isEnrolled()) {
console.log('Successfully loaded user1 from persistence');
member_user = user_from_store;
} else {
throw new Error('Failed to get user1.... run registerUser.js');
}

9. Add the following line of code to generate a transaction ID. The transaction ID is added to
the requests. The identity of the user submitting the request (user1) is also added to the
transaction.

tx_id = fabric_client.newTransactionID();

Your code should look like Figure 7-11.

Figure 7-11 Adding the changeOwner function (4 of 9)

10.Add the following lines of code to create the request to send a proposal to the endorsers:

var request = {
chaincodeId: chainCodeName,
fcn: 'changeVehicleOwner',
args: [key, holder],
chainId: channelName,
txId: tx_id
};

216 Blockchain Developer Exercises Guide

Your code should look like Figure 7-12.

Figure 7-12 Adding the changeOwner function (5 of 9)

11.The Fabric client will be looking for peers that are defined in the role of endorsing peer.
The Fabric client will then send the proposal to the located peers and return all the
endorsements in the results object.

Add the following lines of code to send the transaction proposal to the peers to validate:

return channel.sendTransactionProposal(request);
}).then((results) => {
var proposalResponses = results[0];
var proposal = results[1];
let isProposalGood = false;
if (proposalResponses && proposalResponses[0].response &&
proposalResponses[0].response.status === 200) {
isProposalGood = true;
console.log('Transaction proposal was good');
} else {
console.error('Transaction proposal was bad');
}
if (isProposalGood) {
console.log(util.format(
'Successfully sent Proposal and received ProposalResponse: Status - %s, message - "%s"',
proposalResponses[0].response.status, proposalResponses[0].response.message));

Your code should look like Figure 7-13.

Figure 7-13 Adding the changeOwner function (6 of 9)

12.After receiving endorsements from the peers for a transaction proposal, the transactions
are sent to an orderer along with the proposal for the transaction to be committed to the
ledger.

Chapter 7. Exercise 7: Developing a client application for Hyperledger Fabric 217

Add the following lines of code to build the request for the orderer:

var request = {
proposalResponses: proposalResponses,
proposal: proposal
};

Your code should look like Figure 7-14.

Figure 7-14 Adding the changeOwner function (7 of 9)

13.Add the following lines of code to set a transaction listener. If the transaction is not
committed within this period, report a timeout.

var transaction_id_string = tx_id.getTransactionID(); //Get the transaction ID
string to be used by the event processing
var promises = [];
var sendPromise = channel.sendTransaction(request);
promises.push(sendPromise); //we want the send transaction first, so that we
know where to check status

// get an eventhub once the fabric client has a user assigned. The useris
required because the event registration must be signed
let event_hub = fabric_client.newEventHub();
event_hub.setPeerAddr('grpc://localhost:7053');
// using resolve the promise so that result status may be processed under the
then clause rather than having the catch clause process the status
let txPromise = new Promise((resolve, reject) => {
let handle = setTimeout(() => {
event_hub.disconnect();
resolve({event_status : 'TIMEOUT'}); //we could use reject(new
Error('Trnasaction did not complete within 30 seconds'));
}, 3000);
event_hub.connect();
event_hub.registerTxEvent(transaction_id_string, (tx, code) => {
clearTimeout(handle);
event_hub.unregisterTxEvent(transaction_id_string);
event_hub.disconnect();

218 Blockchain Developer Exercises Guide

Your code should look like Figure 7-15.

Figure 7-15 Adding the changeOwner function (8 of 9)

14.Add the following lines of code to report the results to the application and to receive a
notification reporting whether the transaction has been committed or rejected:

var return_status = {event_status : code, tx_id : transaction_id_string};
if (code !== 'VALID') {
console.error('The transaction was invalid, code = ' + code);
resolve(return_status); // we could use reject(new Error('Problem with the
tranaction, event status ::'+code));
} else {
console.log('The transaction has been committed on peer ' +
event_hub._ep._endpoint.addr);
resolve(return_status);
}
}, (err) => {
//this is the callback if something goes wrong with the event registration or
processing
reject(new Error('There was a problem with the eventhub ::'+err));
});
});
promises.push(txPromise);
return Promise.all(promises);
} else {
console.error('Failed to send Proposal or receive valid response. Response null
or status is not 200. exiting...');
res.send("Could not find Vehicle");
// throw new Error('Failed to send Proposal or receive valid response. Response
null or status is not 200. exiting...');
}
}).then((results) => {
console.log('Send transaction promise and event listener promise have
completed');
// check the results in the order the promises were added to the promise all
list
if (results && results[0] && results[0].status === 'SUCCESS') {
console.log('Successfully sent transaction to the orderer.');

Chapter 7. Exercise 7: Developing a client application for Hyperledger Fabric 219

} else {
console.error('Failed to order the transaction. Error code: ' +
response.status);
res.send("Could not find vehicle");
}
if(results && results[1] && results[1].event_status === 'VALID') {
console.log('Successfully committed the change to the ledger by the peer');
res.json(tx_id.getTransactionID())
} else {
console.log('Transaction failed to be committed to the ledger due to
::'+results[1].event_status);
}
}).catch((err) => {
});

Your code should look like Figure 7-16.

Figure 7-16 Adding the changeOwner function (9 of 9)

Figure 7-17 on page 220 through Figure 7-20 on page 222 list the complete code for the
changeOwner function.

220 Blockchain Developer Exercises Guide

Figure 7-17 changeOwner function - Complete code (1 of 4)

Notes:

! For the complete listing of the code created in this exercise, see “Code solutions” on
page 226.

! The comments in the figures in this section are not included in the code snippets
provided in the bc-dev-ex07commands.txt file and in the complete code listing.

Chapter 7. Exercise 7: Developing a client application for Hyperledger Fabric 221

Figure 7-18 changeOwner function - Complete code (2 of 4)

222 Blockchain Developer Exercises Guide

Figure 7-19 changeOwner function - Complete code (3 of 4)

Figure 7-20 changeOwner function - Complete code (4 of 4)

15.Save the file.

Chapter 7. Exercise 7: Developing a client application for Hyperledger Fabric 223

7.3.4 Testing the changes to the application

In this section, you use the Angular web application to test the changes that you made to the
Node.js sample code.

Perform the following steps:

1. Open the file app.component.html by running the following commands:

cd
~/Blockchain_Redbook_Application/Fabric/Exercise7/Front-End/Angular2/src/app/
code app.component.html

2. Uncomment line 4 by removing <!-- from the beginning and - -> from the end of the line
to test the results of the changeOwner function that was added to the Node.js server
(Figure 7-21).

3. Press Ctrl + S to save the file after making the change.

Figure 7-21 App.component.html

4. Repeat all the steps in 7.3.1, “Registering and enrolling users ” on page 209 and steps 1
on page 210 and 2 on page 210 in 7.3.2, “Running the sample application” on page 210.

 You should have two terminal windows:

– Terminal window 1: Running the Node.js server on localhost:8000.

– Terminal window 2: Running the Angular web application on localhost:4200.

5. Open your browser on localhost:4200, as shown in Figure 7-22.

Figure 7-22 Web application page

There is a new option, Update Owner (Submit Transaction), which is provided by the
function changeOwner in the Node.js server.

Note: If you get the following response, ignore it; it means user1 is already registered.

Failed to register: Error: fabric-ca request register failed with errors
[[{"code":0,"message":"Registration of 'user1' failed: Identity 'user1' is
already registered"}]]

224 Blockchain Developer Exercises Guide

6. Click Update Owner (Submit Transaction). Change the owner of the vehicle to Maria
and click Submit (Figure 7-23).

Figure 7-23 Update Vehicle owner page

7. Return to the terminal window where the Node.js server is running. Verify that the
transaction was committed successfully by reading the following output:

changing Owner
Store path:/home/BlockchainUser/.hfc-key-store
Successfully loaded user1 from persistence
Transaction proposal was good
Successfully sent Proposal and received ProposalResponse: Status - 200, message – "OK"

Chapter 7. Exercise 7: Developing a client application for Hyperledger Fabric 225

8. Click Query (Query Asset) to search for the vehicle. Enter ID = 1 and click Query, as
shown in Figure 7-24. Maria should be the new owner.

Figure 7-24 Query Vehicle

7.3.5 Cleaning up the environment

In this section, you will clean up the environment to have it ready for the next exercises.

Perform the following steps:

1. Stop the Node.js server by pressing Ctrl + C in the terminal window where it is running.

2. Stop the Angular web application by pressing Ctrl + C in the terminal window where it is
running.

3. Run the following commands to remove the running docker containers:

docker rm -f $(docker ps -aq)
docker system prune -f
docker volume rm $(docker volume ls -q)
docker rm $(docker ps -aq)

4. Run the following commands to remove the stored credentials for the Admin and user1:

 cd ~
 rm -rf .hfc-key-store/

Note: If your query returns no results, ensure that Cors is enabled in your Firefox browser
as described in 7.1.3, “Prerequisites” on page 205. If you forgot to enable Cors, enable it
now, restart your browser and open your browser on localhost:4200, as shown in
Figure 7-22. Repeat step 8 on page 225 (Query).

226 Blockchain Developer Exercises Guide

7.4 Exercise review and wrap-up

In this exercise, you enhanced the code in the sample Node.js application to add a function
that is called changeOwner. You use the Fabric Client SDK to build the function.

You learned the flow of a submitted transaction that interacts with the chaincode.

You tested the changeOwner function and observed the effects that the submitted transaction
had on the web application and the chaincode.

Code solutions
If you run into problems copying and pasting the code in this exercise, you can find the
complete code in the code-solutions folder. Double-click the File icon, navigate to
/Blockchain_Redbook_Application/code-solutions and locate the folder for this exercise
(Figure 7-25).

Figure 7-25 Code-solutions folder

Recommended reading
Here are some resources for more information about the topics that are described in this
exercise:

! Hyperledger Fabric SDK for node.js overview

https://fabric-sdk-node.github.io/

! Hyperledger Fabric SDK for Node.js code

https://github.com/hyperledger/fabric-sdk-node

! Hyperledger Fabric: Writing Your First Application

https://hyperledger-fabric.readthedocs.io/en/v1.0.6/write_first_app.html

