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Abstract: In this paper, we suggest a conventional semiclassical approximation to calculate several thermodynamic

quantities of a rotating Bose– Einstein condensation in a deep optical lattice. Expressions for the condensation fraction,

critical temperature, and heat capacity are derived analytically. These expressions are obtained by considering the

standard harmonic approximation of the deep optical lattice potential. The suggested approach is able to include the

the finite size and the positive chemical potential effects simultaneously. The advantage of our suggested approach is in

its simplicity, in comparison to the quantum-mechanical calculations (Bose–Hubbard model). Moreover, its generality

allows the treatment of a finite temperature regime

Key words: Bose–Einstein condensates in periodic potentials, semiclassical approximation, Boson degeneracy in

quantum fluids

1. Introduction

Ultra-cold Bose gas in a state of a rotating Bose–Einstein condensation (BEC) trapped in a deep optical lattice is

an important system for studying several fundamental problems in condensed matter physics [1, 2, 3], including

the lattice system of charged particles subject to a uniform magnetic field [4], superfluid to Mott insulator phase

transition [5], type II superconductors [6], quantum Hall effect [7], and fully frustrated Josephson junction arrays

[8].

In a deep optical lattice, previous studies have confirmed that, for an appropriate parameters regime, the

atoms are localized in lattice sites; moreover, a band-like structure appears [9, 10]. When the hopping between

lattice sites is negligible, the optical potential can be approximated by an equivalent local harmonic potential at

these sites. This approximation considerably simplifies the problem and provides a starting point for calculating

the finite temperature regime for the thermodynamic properties for which the tight-binding approximation fails.

While the preceding papers elaborate the thermodynamic properties of a BEC in an optical lattice

[11, 12, 13, 14] and a rotating BEC in harmonic potential [15, 16, 17] , the present paper investigates the

thermodynamic properties of a rotating BEC in a deep optical lattice [18]. Separately, fast rotation or the

deepness of the optical potential is affected significantly by the thermodynamic properties of the system [19, 20]

compared to the pure harmonically BEC. Consequently, study of the thermodynamic properties of a rotating

Bose gas in an optical lattice under a realistic experimental condition is quite interesting.
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Motivated by the experiments by Tung et al. [21] and Williams et al. [22, 23], the condensate fraction,

critical temperature, and heat capacity are calculated. We suggest a modified semiclassical approximation,

which is the density of state (DOS) approach. In this approach, the sums over the energy levels for the

thermodynamic quantities are approximated directly by ordinary integrals weighted by the appropriate DOS.

The parametrized DOS provides a consistent way for treating the effects of finite size, the fast rotation regime,

deepness of the optical potential, and the positive chemical potential, all of them simultaneously. The latter

effect is coincidental with the effect of repulsive interaction provided by the mean-field theory approach.

The outcome results show that the ultra-cold rotating BEC in an optical lattice displays distinct ther-

modynamic behavior compared to a rotating BEC or a confined BEC in lattice potential. The effects of the

optical lattice and the rotation are to act as a stirring mechanism.

This paper is planned as follows: the next section includes a simple model for calculating the energy

and momentum operators for the rotating harmonic oscillator in an optical lattice. In section 3, we present

our results for the condensation fraction, critical temperature, and heat capacity. The last section outlines the

conclusion.

2. Energy and momentum operators

Properties of the single particle energy eigenvalues have been discussed for the combined harmonic optical trap

[19], as well as rotating harmonic potential [20, 24]. Here we use the results of these studies to suggest an

approximated single particle spectrum for the rotating harmonic oscillator in an optical lattice.

Consider a single atom of mass m trapped in a combined 3D cylindrically symmetric harmonic potential

with a 2D optical lattice that rotates uniformly in the xy -plane with an angular velocity Ω(≡ Ωêz) around the

z -axis. In the rotating frame, the noninteracting single particle Hamiltonian has the form

H =
p2

2m
+ Vhar + Vlat − Ω Lz (1)

where

Vhar =
m

2
ω2
⊥r

2
⊥ +

m

2
ω2
zz

2, Vlat = V0[sin
2
(πx
dx

)
+ sin2

(πy
dy

)
], (2)

With p2 = p2x+p2y+p2z , r
2
⊥ = x2+y2 , {ω⊥(≡ ωx,y), and ωz} are the effective trapping frequencies of the harmonic

potential, V0 is the lattice potential depth, dj is the lattice spacing in a direction j , and Lz = xpy − ypx is

the z−component for the angular momentum.

For the Hamiltonian (1) it is impossible to find an exact analytical expression for the energy eigenvalues.

An approximated expression can be readily obtained by extending the standard harmonic approximation for the

optical lattice potential Vlat . In a deep optical lattice where the atoms are localized at the potential minima of

the optical lattice and hopping between different lattice sites is negligible, the atoms will trapped in a harmonic

potential [25],

Vlat =
m

2
ω2
lat(x

2 + y2) (3)

with on-site trapping frequency, ω2
lat =

4ω2
RV0

ER
, where ER ≡ ℏωR = π2ℏ2/2md2x,y is an energy scale for specifying

the lattice depth. It is defined as the recoil energy that 1 atom requires when it absorbs 1 lattice photon.
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Gathering Eqs.(1), (2), and (3) [26], the noninteracting single particle Hamiltonian can be approximated by

H =
p2x + p2y + p2z

2m
+

m

2

[
(ω2

⊥ + ω2
lat) r

2
⊥ + ω2

zz
2
]
− Ω(xpy − ypx) (4)

In terms of the well-known dimensionless creation, annihilation, and number operators [27], Eq.(4) becomes

H = ℏω+(a
†
+a+ +

1

2
) + ℏω−(a

†
−a− +

1

2
) + ℏωz(a

†
zaz +

1

2
), (5)

where ω± =
√
ω2
⊥ + ω2

lat ∓Ω, and ax,y = 1√
2

(
x,y√

ℏ
m
√

ω2
⊥+ω2

lat

+ i

px,y

√
ℏ

m
√

ω2
⊥+ω2

lat

ℏ

)
, az = 1√

2

(
z√
ℏ

mωz

+ i
pz

√
ℏ

mωz

ℏ

)
,

a± = 1√
2
(ax ∓ iay). Hamiltonian in (5) is characterized by a discrete single particle energy levels given by

E(n+, n−, n) = n+ℏω⊥γ+ + n−ℏω⊥γ− + nzℏωz + E0 (6)

With γ± =
[√

1 +
ω2

lat

ω2
⊥

∓ Ω
ω⊥

]
, and E0 = 1

2ℏ{γ+ω⊥ + γ−ω⊥ + ωz} is the ground state energy.

3. General behavior for the thermodynamic properties

First of all, we are coming to treat the problem as in ordinary statistical mechanics, that is, via the familiar

relation between the number of atoms, temperature, and the chemical potential. The number of atoms in any

specified energy state is defined by the familiar Bose–Einstein distribution:

nn+,n−,nz =
∞∑

n+,−,z=0

ze−βE(n+,n−,nz)

1− ze−βE(n+,n−,nz)
=

∞∑
j=0

zj
∞∑

n+,−,z=0

e−jβE(n+,n−,nz), (7)

where β = (1/KBT ) and z = eβ(µ(Ω,V0)−E0) is the fugacity. Degeneracy factors in Eq. (8) are avoided by

accounting for quantum number individually. The chemical potential is defined as the ground state energy of

the rotating boson in the optical lattice and determined by the constraint that the total number of particles in

the system is given by

N =

∞∑
n+,−,z=0

nn+,n−,nz =

∞∑
j=0

zj
∞∑

n+,−,z=0

e−jβE(n+,n−,nz), (8)

where β = (1/KBT ) and z = eβ(µ(Ω,V0)−E0) is the fugacity. Degeneracy factors in Eq. (8) are avoided by

accounting for quantum number individually.

It is impossible to evaluate the sum in Eq. (8) analytically in a closed form. Another possible way to do

this analysis is to separate out the lowest energy state population from the sum and approximate the sum over

the excited energy state directly by an ordinary integral weighted by the accurate DOS.

3.1. Approximated DOS of a rotating BEC in an optical lattice

An accurate approximated DOS formula of a rotating BEC in an optical lattice can be parametrized by using the

calculation techniques given in reference [28] for the magnetically trapped fermions. Two slight modifications
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for the DOS in [29, 30, 31, 32] are considered by one of the authors for rotating condensate [15] and trapped

boson gas in a combined magnetic-optical potential [11]. However, for the spectrum in Eq. (6), the DOS for

the discrete particle energy eigenvalue is given by

ρ(ϵ) =
1

(γ+γ−)

{1

2

ϵ2

(ℏωg)3
+

3

2

( ω̄

ωg

) ϵ

(ℏωg)2
+

(9ω̄2 − ω̄2
r)

8ℏω3
g

}
, (9)

where

ωg = [ω2
⊥ωz]

1/3, ω̄ =
ω⊥

3
[γ+ + γ− +

ωz

ω⊥
], and ω̄r =

ω⊥√
3

√
γ2
+ + γ2

− + ω2
z/ω

2
⊥. (10)

In Eq. (9) the variable ϵ refers to the continuous spectrum. For the nonrotating trap and absence of the

optical potential, the parameter γ+γ− = 1. In this limit, Eq. (9) reduces to the calculated DOS in [29, 33],

ρ(ϵ) = 1
2

ϵ2

(ℏω)3 + 3
2

ϵ
(ℏω)2 + 1

(ℏω) , where ω is the trap frequency.

Generalization to a many particle system is straightforward. Following the method outlined in our

previous paper [11, 15], the DOS for the many particle system in a fast rotation regime, i.e. Ω ∼ ω⊥ , is given

by

ρ(ϵ) =
1

(γ+γ−)

{1

2

ϵ2

(ℏωg)3
+

ϵ

(ℏωg)2

[3
2

ω̄

ωg
+

(9ω̄2 − ω̄2
r)

4ℏωg
× µ(Ω, V0)

[γ+ω⊥ + γ−ω⊥ + ωz]2

]}
(11)

In Eq. (11), µ(Ω, V0) is the chemical potential of a rotating boson in an optical lattice. Once µ(Ω, V0) is known,

the thermodynamic properties of the rotating boson in an optical lattice can be calculated. The nontrivial aspect

here is the determination of µ(Ω, V0) as a function of Ω and V0 .

3.1.1. Chemical potential of a rotating BEC in an optical lattice

Several authors have discussed the rotation dependence of the chemical potential µ(Ω) and the optical potential

depth dependence of the chemical potential µ(V0) for a finite number of particles N , but did not discuss the

rotation- lattice dependence of the chemical potential µ(Ω, V0) presented in this work.

A simple method to calculate the rotation-lattice dependence of the chemical potential µ(Ω, V0) is to

follow Hadzibabic and co-workers [34]. In their recent work, they identified a relevant interaction energy scale

to explore the relationship between the nonsaturation of the ideal Bose gases and the interatomic interactions

for the pure harmonically trapped gas. The identified energy scale is given by

µ0(ωg) =
ℏωg

2

(
15N0

a

ahar

)2/5
, (12)

where a is the s-wave scattering length and ahar =
√

ℏ
mωg

is the ground state spatial extension for the harmonic

oscillator. It is clear that the energy in Eq. (12) is equivalent to the mean-field prediction for the nonrotating

chemical potential µ(T = 0) of a harmonically trapped gas with N0 condensate atoms in the Thomas–Fermi

limit. Since in our approximation both the rotation and the optical potential lead to a shift in the harmonic

oscillator frequency, then we have to generalize Hadzibabic’s results to calculate an accurate expression for

µ(Ω, V0).
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Generalization of Hadzibabic’s results to include the rotation effect can be obtained by using Fetter’s [16]

results, i.e.

µ0(Ω) = µ0(ωg)
(
1− Ω2/ω2

⊥
)2/5

= µ0(ωg)(1− α2)2/5, (13)

where α is the rotation rate. Eq. (13) gives the relevant interaction energy scale for the rotating trapped gas.

When the rotating bosons are adiabatically loading in optical potential, the generalization for the result

given in Eq. (13) can be obtained by using Pedri and co-workers’ [35] results for the local chemical potential at

the lattice sites. Thus Hadzibabic’s scaling energy for the rotating bose gas in an optical lattice becomes

µ(Ω, V0) = µ0(ωg)(1− α2)2/5
(π2V0

4ER

)1/10

=
1

2
kBT0

(ζ(3)
N

)1/3[
15N0

a

a′har

]2/5[π2V0

ER

]1/10
, (14)

where a′har =
√

ℏ
mωg(γ+γ−)1/3

, and

T0 =
ℏωg

kB

( N

ζ(3)

)1/3
(γ+γ−)

1/3 (15)

is the BEC transition temperature for the noninteracting gas. Now we can use Dalfovo’s interaction scaling

parameter η [36] which fixed the chemical potential of the harmonically trapped gas in units of the transition

temperature for the non-interacting gas in the same trap,

η ≡ µ0

kBT0
=

1

2

(ζ(3)
N

)1/3[
15N0

a

a′har

]2/5
. (16)

The scaling parameter η describes the strength of the atomic interactions within the condensate. It is indepen-

dent of the system size when the thermodynamic limit is taken in the usual way (N → ∞). In terms of η , Eq.

(14) becomes

µ(Ω, V0) = ηkBT0

[
1− α2

κ2

]2/5[π2V0

ER

]1/10
(17)

where κ =

√
1 +

ω2
lat

ω2
⊥

≡
√
1 + 4S2

⊥
V0

ER
gives the shift in the harmonic oscillator frequencies due to the

combined optical potential-rotation effects, and S⊥ = ωR/ω⊥ is the ratio between recoil frequency of the optical

potential and the radial frequency of the harmonic potential (we shall refer to this ratio as the reduced recoil

frequency). The parametrized µ(Ω, V0) in Eq. (17) looks like a generalization for the well-known Thomas–Fermi

approximation of a harmonically trapped boson [36]. Furthermore, it embodies the interatomic interaction effect

in our semiclassical approach. Finally, in the thermodynamic limit the contribution from η term is vanished.

3.2. Condensate fraction

Now it is straightforward to calculate the total number of particles in Eq. (8) by using the DOS,

N =
∞∑
j=0

zj
∞∑

n+,−,z=0

e−jβE(n+,n−,nz) ≡ N0 +
∞∑
j=1

zj
∫ ∞

0

ρ(ϵ)e−jβϵdϵ

= N0 +
g3(z)

[κ2 − α2]

{(kBT
ℏωg

)3

+
(kBT
ℏωg

)2 g2(z)

g3(z)
R(Ω, V0)

}
(18)
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where R(Ω, V0) =
[
3
2

ω̄
ωg

+
(9ω̄2−ω̄2

r)
36ω̄2

µ(Ω,V0)
ℏωg

]
. In Eq. (18) N0 is the number of particles in the lowest energy state

(this number can be macroscopic, i.e. of the order of N , when µ(Ω, V0) = E0 , and T = 0). This approximation

requires that the condition kBT >> ℏγ±, ℏωz is satisfied. It is not easy to recover this validity condition

directly. Naively one could have expected that kBT >> ℏγ−, ℏωz especially for a fast rotating trap, i.e. α = 1.

However, the condition kBT >> ℏγ+ can be satisfied for deep lattice potential.

In terms of the reduced temperature t = T
T0

, the condensate fraction is given by

N0

N
= 1− t3 − R1(Ω, V0) t2 (19)

with

R1(Ω, V0) =
ζ(2)

ζ(3)[κ2 − α2]1/3

[3
2

ω̄

ωg

(ζ(3)
N

) 1
3 + η

[
κ2 − α2

] 1
3
[π2V0

ER

]1/10 [
1− α2

κ2

] 2
5
(9ω̄2 − ω̄2

r)

36ω̄2

]
(20)

where Eq. (15), and (γ+γ−) =
[
κ2 − α2

]
are used here. The last term in Eq. (19) provides the perturbation

correction to the ideal gas result, which is N0

N = 1− t3 . This correction is included in the parameter R1(Ω, V0):

in the brackets the first term gives the finite size effect, while the second term accounts for the effect of the

chemical potential when it becomes equal to the lowest energy state. The latter is similar to the effect of

repulsive interaction provided by the mean-field theory approach.

In our approach the changeable parameters are: the potential depth, V0 , in units of the recoil energy,

ER , the rotation frequency, Ω, in units of ω⊥ , α , and the reduced recoil frequency, S⊥ . The usual parameters

for finite size, N , and the interatomic interaction effect, η , are used. The following parameters values, to

reproduce Williams’ experiment setup [23], are also used: the harmonic oscillator frequencies are {ω⊥, ωz} =

2π × {20.1, 53.0} Hz , while the optical potential depth, V0 , and the recoil frequency are set in units of

ER = 143 Hz , and ω⊥ = 20.1 Hz , respectively.

In Figure 1, a direct comparison between the measured condensed fraction by Williams et al. [23] and

the calculated theoretical results from Eq. (19) is given. This figure shows that the calculated results are in

considerable agreement with the measured data.

In Figure 2 the dependence of the condensate fraction on the reduced temperature t and the depth of

the lattice potential V0(ER) is presented for rotation rate α = 0.0. It has a monotonically decreasing nature

everywhere. As the lattice depth increases the condensate fraction dependence on temperature changes from

N0/N = (1− t3) to N0/N = (1− t3/2). This temperature dependence was previously predicted by Blakie and

Wang [19] for optically trapped nonrotating Bose gas.

In Figure 3 the dependence of the condensate fraction on the depth of the lattice potential V0(ER) and

the rotation rate α is presented. It has a monotonically decreasing nature for all α range {0, 1} , rather rapid
in small potential depth range and minor in intermediate depth. In the range of greater depths the rate of

decreasing slows down.

The effects of finite size and interatomic interaction on the condensate fraction are summarized in Figure

4 for rotation rate α = 0.9, potential depth V (ER) = 4. The reduced temperature t = 0.7, and the reduced

recoil energy S⊥ = 1.0. This figure shows that the simultaneous effects of the finite size and interatomic

interaction lead to a reduction in the condensed fraction by about ∼ 15%.
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Figure 1. Condensate fraction versus the lattice depth

V0(ER) for different values of the reduced temperature t .

The rotation rates α = Ω/ω⊥ = 0.9. Lines represent the

theoretical results calculated from Eq. (18), while solid

circles are the measured data from Williams et al. [23].

The parameter η is taken to be η = 0.4, and the total

number of particles is N = 1.0× 104 .

Figure 2. Condensate fraction as a function of the lattice

depth V0(ER) and the reduced temperature t . The trap

parameters are {ω⊥, ωz} = 2π×{20.1, 53.0} Hz , reduced

recoil energy S⊥ = 10, η = 0.3 and N = 104 , and the

rotation rate is α = 0.0.
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Figure 3. Condensate fraction as a function of the lattice

depth V0(ER) and the rotation rate α . The trap param-

eters are {ω⊥, ωz} = 2π×{20.1, 53.0} Hz , reduced recoil

energy S⊥ = 1, η = 0.4 and N = 104 , and the reduced

temperature is t = 0.6.

Figure 4. Condensate fraction versus the atoms number

N = 10m and the interatomic interaction parameter η .

3.3. Critical temperature

One of the main proposals of the present work is to study the effects of the finite size and interatomic interaction

on the transition temperature of the ideal Bose gas trapped in rotating optical lattice, T0 , given in Eq. (15).

These effects can be seen more clearly by calculating the critical temperature. The latter is obtained as usual

[11, 30, 32] by setting N0/N in Eq. (19) equal to zero, thus

Tc =
ℏωg

kB

( N

ζ(3)

)1/3[
κ2 − α2

]1/3[
1− 1

3
R1(Ω, V0)

]
(21)
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The calculated results for T0 and Tc from Eqs. (15) and (21), respectively, provide a consistent way for

treating the effects of the finite size and interatomic interaction. Figure 5 illustrates the fundamental change in

the transition temperature due to finite size and interaction effect in the fast rotation regime, i.e. α = 0.9, for

V0(ER) = 4, S⊥ = 2.0. However, the simultaneous effects of the finite size and interatomic interaction on the

transition temperature are the same as the above-mentioned behavior for the condensed fraction, both of them

decrease T0 .
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Figure 5. Finite size and interatomic interaction effects

on the transition temperature of the ideal Bose gas trapped

in a rotating optical lattice.

Figure 6. Critical temperature versus the lattice depth

V0(ER) and the rotation rate α .

In Figure 6 the dependence of the critical temperature Tc on the rotation rate α and optical lattice depth

V0(ER) is illustrated. It is clear that the critical temperature decreases by increasing the rotation rate α , while

it increases by increasing the lattice depth V0(ER). Since the rate of decreasing is rapid in small depth due to

rotation and it slows down for high depth, we have to conclude that for the rotating boson in optical lattice,

the compensate of the critical temperature can be balanced by the localization of the atoms at the optical trap

lattice sites due to the centrifugal force. The increase or decrease in the critical temperature as a function of

V0 is considered by Blakie and Wang [19] for optically trapped nonrotating Bose gas.

3.4. Heat capacity

In the DOS approach, the heat capacity can be calculated by differentiating the total energy E(T ) with respect

to the temperature, i.e.

CV (T ) =
(∂E
∂T

)
N,V

=
∂

∂T

∞∑
j=1

zj
∫ ∞

0

ϵ ρ(ϵ)e−jβϵdϵ (22)

However, the treatment of the heat capacity is slightly more complicated because we have to take into account

2 different temperature regimes, which are T less or greater than T0 .

For T < T0 the chemical potential µ(Ω, V0) is fixed (independent on T ) and the rotating condensate

atoms in the ground state N0 depend on the temperature as well as the rotation rate α and the optical potential

depth V0 . From Eqs. (22), the heat capacity is given by

CV,T<T0

NkB
= 12

ζ(4)

ζ(3)
t3 + 6 R1(Ω, V0)t

2 (23)
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On the other hand, for T > T0 , the rotating condensate N0 vanishes (note that N0 → 0, for α > 1

in the absence of the optical potential). However, for T > T0 the chemical potential µ(Ω,V0) depends on the

temperature for any rotation rate and optical potential depth. Following Grossmann and Holthaus [29], we

have

CV,T>T0

NkB
= 12

g4(z)

ζ(3)
t3 + 6

g3(z)

ζ(3)
R1(Ω, V0)t

2 −
[3g3(z)
ζ(3)

t3 + 2
g2(z)

ζ(3)
R1(Ω, V0)t

2
]
× 3g3(z) + 2R1(Ω, V0)g2(z)/t

g2(z) +R1(Ω, V0)g1(z)/t

(24)

In the absence of the optical potential for the nonrotating condensate, i.e. γ+γ− → unity, the results previously

obtained by Crossmann and Holthaus [29] can be obtained by setting η = 0. When
CV,T>T0

NkB
is calculated, the

convenient integral representation for the Bose function, gk(z), is used [37]. For |z| < 1 and k is real positive

≥ 1 this integral representation is given by

gk(z) =
z

Γ(k)

∫ 1

0

[log(1/s)]k−1

1− zs
ds, Im s = 0 (25)

Note that this representation includes |z| = 1 if k ≥ 2. Another useful approximated formula for the Bose

function is given by Klünder and Pelster [38] when ℏωg/kBT < 1.

In Figures 7 and 8 the calculated results from Eqs. (23) and (24) for the heat capacity as a function of

the reduced temperature t with V0(ER) and α play as a parameter are represented graphically. The reduced

recoil frequency and the interaction parameter are taken to S⊥ = 0.4 and η = 0.5, respectively. These 2 figures

show that the specific heat increases with the reduced temperature and is discontinuous at t = 1. It gets larger

for t < 1 and smaller for t ≥ 1. For a finite system, the jump is quite significant and its magnitude is given by

∆C
(∞)
V,t=1

NkB
=

[
3 + 2

ζ(2)

ζ(3)
R1(Ω, V0)

]
× 3ζ(3) + 2R1(Ω, V0)ζ(2)

ζ(2) +R1(Ω, V0)ζ(1)
(26)

For an infinite system, i.e. the thermodynamic limit, the result first obtained by Crossmann and Holthaus [29]

for the magnitude of the jump is recovered,
∆C

(∞)
V,t=1

NkB
= 9 ζ(3)

ζ(2) .
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Figure 7. The heat capacity CV /NkB as a function of

the reduced temperature and lattice depth V0(ER) .

Figure 8. The heat capacity CV /NkB as a function of

the reduced temperature and the rotation rate α .
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Figure 9 is devoted to investigate the heat capacity as a function of α and V0(ER) for 2 different values

of t : t < 1 and t > 1. This figure shows that the dependence of the heat capacity on temperature does not

change, which means that the effect of both α and V0(ER) is to act as a stirring mechanism.

Finally, using CV as indicator, the discontinuity characterizes the phase transition to be of second order,

according to the Ehrenfest definition. Remarkably in the thermodynamic limit, Eq. (23) obeys the third law of

thermodynamics, which demands the vanishing of the heat capacity at zero temperature. Eq. (24) corresponds

to the Dulong–Petit law in the very high temperature limit, (
CV,T>T0

NkB
)T→∞ = 3.
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Figure 9. The heat capacity CV /NkB as a function of the rotation rate α and lattice depth V0(ER) .

4. Conclusion

In this paper, an accurate semiclassical approach is used to investigate the thermodynamic properties of the

rotating boson in an optical lattice. An expression for the condensed fraction, critical temperature, and the heat

capacity are given. Our approach includes the important physical effects, such as finite size effect, interatomic

interaction, and the effect of a positive chemical potential at condensation. The calculated results show that,

in the presence of the optical lattice, the effect of the fast rotation (centrifugal suppression) is extinguished.

For small lattice depth, the effect of optical potential is to act as a stirring mechanism. As well as for the

deeper lattice depth, atoms may be only localized in lattice sites. Consequently, the effect of centrifugal force

is quenched.
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