Export 2 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O [P] Q R S T U V W X Y Z   [Show ALL]
Gad, A., J. M. Sánchez, J. A. Browne, L. Nemcova, J. Laurincik, R. Prochazka, and P. Lonergan, "Plasma extracellular vesicle miRNAs as potential biomarkers of superstimulatory response in cattle", Scientific Reports, vol. 10, no. 1: Nature Publishing Group UK, pp. 1–16, dec, 2020. AbstractWebsite

The ability to predict superstimulatory response would be a beneficial tool in assisted reproduction. Using small RNAseq technology, we profiled extracellular vesicle microRNA (EV-miRNA) abundance in the blood plasma of heifers exhibiting variable responses to superstimulation. Estrous synchronized crossbred beef heifers (n = 25) were superstimulated and blood samples were collected from each heifer on Day 7 of consecutive unstimulated (U) and superstimulated (S) cycles. A subset of high (H) and low (L) responders was selected depending on their response to superstimulation and EV-miRNA profiles were analysed at both time-points in each heifer. Approximately 200 known miRNAs were detected in each sample with 144 commonly detected in all samples. A total of 12 and 14 miRNAs were dysregulated in UH vs. UL and in SH vs. SL heifers, respectively. Interestingly, miR-206 and miR-6517 exhibited the same differential expression pattern in H compared to L heifers both before and after superstimulation. Pathway analysis indicated that circadian rhythm and signaling pathways were among the top pathways enriched with genes targeted by dysregulated miRNAs in H vs. L responding heifers. In conclusion, heifers with divergent ovarian responses exhibited differential expression of plasma EV-miRNAs which may be used as a potential biomarker to predict superstimulation response.

El-Rashidy, A. A., G. Waly, A. Gad, A. A. Hashem, P. Balasubramanian, S. Kaya, A. R. Boccaccini, and I. Sami, "Preparation and in vitro characterization of silver-doped bioactive glass nanoparticles fabricated using a sol-gel process and modified Stöber method", Journal of Non-Crystalline Solids, vol. 483: North-Holland, pp. 26-36, 2018. Abstract