Publications

Export 2 results:
Sort by: Author [ Title  (Asc)] Type Year
[A] B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
El-Rashidy, A., G. Waly, A. Gad, J. A. Roether, J. Hum, Y. Yang, R. Detsch, A. Hashem, I. Sami, W. G. H. H. Goldmann, et al., "Antibacterial activity and biocompatibility of zein scaffolds containing silver-doped bioactive glass", Biomedical Materials, 2018. AbstractWebsite

Abstract Composite 3D scaffolds combining natural polymers and bioceramics are promising candidates for bone tissue engineering (BTE). Zein, as a natural plant protein, offers several advantages, including biocompatibility, adequate strength properties, and low/no immunogenicity; however, it lacks bioactivity. Thus, composite zein:bioactive glass (BG) scaffolds are proposed as promising candidate for BTE applications, with silver-doping of bioactive glass providing an antibacterial effect against possible post-implantation infection. Therefore, the aim of this study was to investigate the in vitro antibacterial properties, biocompatibility, bioactivity and compressive strength of zein scaffolds containing silver-doped bioactive glass. BG nanoparticles, undoped and Ag-doped, were fabricated using the sol-gel method. 3D composite zein:BG scaffolds, containing 20 wt.% BG, were prepared and their antibacterial activity against E. coli and S. aureus was assessed using the disk diffusion assay. Human osteoblast-like MG-63 cells were used to evaluate the in vitro biocompatibility of the prepared scaffold groups. In addition, the compressive strength of the scaffolds was determined using uniaxial compression strength testing and the scaffold interconnected porosity was measured using helium pycnometer. Disc diffusion assay showed that only zein scaffolds containing Ag-doped sol-gel BG are antibacterially positive against E. coli and S. aureus. Pure zein scaffolds and zein scaffolds containing sol-gel-derived BG showed no negative influence on the growth of MG-63 cells, as evident by the cells’ ability to survive, proliferate, and function on these scaffolds. Moreover, incorporating sol-gel-derived BG into zein scaffolds at zein:BG of 80:20 ratio showed bioactive properties with adequate porosity without affecting the scaffolds’ compressive strengths, which was similar to that of trabecular bone, suggesting that the new composites have potential for BTE applications in non-loaded bearing areas.

Mehaisen, G. M. K., A. M. Saeed, A. Gad, A. O. Abass, M. Arafa, and A. El-Sayed, "Antioxidant Capacity of Melatonin on Preimplantation Development of Fresh and Vitrified Rabbit Embryos: Morphological and Molecular Aspects.", PloS one, vol. 10, no. 10, pp. e0139814, 2015. Abstractjournal.pone_.0139814.pdfWebsite

Embryo cryopreservation remains an important technique to enhance the reconstitution and distribution of animal populations with high genetic merit. One of the major detrimental factors to this technique is the damage caused by oxidative stress. Melatonin is widely known as an antioxidant with multi-faceted ways to counteract the oxidative stress. In this paper, we investigated the role of melatonin in protecting rabbit embryos during preimplantation development from the potential harmful effects of oxidative stress induced by in vitro culture or vitrification. Rabbit embryos at morula stages were cultured for 2 hr with 0 or 10-3 M melatonin (C or M groups). Embryos of each group were either transferred to fresh culture media (CF and MF groups) or vitrified/devitrified (CV and MV groups), then cultured in vitro for 48 hr until the blastocyst stage. The culture media were used to measure the activity of antioxidant enzymes: glutathione-s-transferase (GST) and superoxide dismutase (SOD), as well as the levels of two oxidative substrates: lipid peroxidation (LPO) and nitric oxide (NO). The blastocysts from each group were used to measure the expression of developmental-related genes (GJA1, POU5F1 and Nanog) and oxidative-stress-response-related genes (NFE2L2, SOD1 and GPX1). The data showed that melatonin promoted significantly (P<0.05) the blastocyst rate by 17% and 12% in MF and MV groups compared to their controls (CF and CV groups). The GST and SOD activity significantly increased by the treatment of melatonin in fresh or vitrified embryos, while the levels of LPO and NO decreased (P<0.05). Additionally, melatonin considerably stimulated the relative expression of GJA1, NFE2L2 and SOD1 genes in MF and MV embryos compared to CF group. Furthermore, melatonin significantly ameliorated the reduction of POU5F1 and GPX1 expression induced by vitrification. The results obtained from the current investigation provide new and clear molecular aspects regarding the mechanisms by which melatonin promotes development of both fresh and vitrified rabbit embryos.