Publications

Export 2 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E [F] G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
F
Forde, N., F. Carter, S. di Francesco, J. P. Mehta, M. Garcia-Herreros, A. Gad, D. Tesfaye, M. Hoelker, K. Schellander, and P. Lonergan, "Endometrial response of beef heifers on day 7 following insemination to supraphysiological concentrations of progesterone associated with superovulation.", Physiological genomics, vol. 44, issue 22, pp. 1107-15, 2012. Abstract

Ovarian stimulation is a routine procedure in assisted reproduction to stimulate the growth of multiple follicles in naturally single-ovulating species including cattle and humans. The aim of this study was to analyze the changes induced in the endometrial transcriptome associated with superovulation in cattle and place these observations in the context of our previous data on changes in the endometrial transcriptome associated with elevated progesterone (P4) concentrations within the physiological range and those changes induced in the embryo due to superovulation. Mean serum P4 concentrations were significantly higher from day 4 to day 7 in superovulated compared with unstimulated control heifers (P < 0.05). Between-group analysis revealed a clear separation in the overall transcriptional profile of endometria from unstimulated control heifers (n = 5) compared with superovulated heifers (n = 5). This was reflected in the number of differentially expressed genes (DEGs) identified between the two groups with 795 up- and 440 downregulated in superovulated endometria. Ten times more genes were altered by superovulation (n = 1,234) compared with the number altered due to elevated P4 within physiological ranges by insertion of a P4-releasing intravaginal device (n = 124) with only 22 DEGs common to both models of P4 manipulation. Fewer genes were affected by superovulation in the embryo compared with the endometrium, (443 vs. 1,234 DEGs, respectively), and the manner in which genes were altered was different with 64.5% of genes up- and 35.5% of genes downregulated in the endometrium, compared with the 98.9% of DEGs upregulated in the embryo. In conclusion, superovulation induces significant changes in the transcriptome of the endometrium which are distinct from those in the embryo.

Faheem, M. S. S., N. Ghanem, A. Gad, R. Procházka, and S. M. M. Dessouki, "Adaptive and Biological Responses of Buffalo Granulosa Cells Exposed to Heat Stress Under In Vitro Condition", Animals, vol. 11, no. 3, 2021. AbstractWebsite

The steroidogenesis capacity and adaptive response of follicular granulosa cells (GCs) to heat stress were assessed together with the underlying regulating molecular mechanisms in Egyptian buffalo. In vitro cultured GCs were exposed to heat stress treatments at 39.5, 40.5, or 41.5 °C for the final 24 h of the culture period (7 days), while the control group was kept under normal conditions (37 °C). Comparable viability was observed between the control and heat-treated GCs at 39.5 and 40.5 °C. A higher release of E2, P4 and IGF-1 was observed in the 40.5 °C group compared with the 39.5 or 41.5 °C groups. The total antioxidant capacity was higher in response to heat stress at 39.5 °C. At 40.5 °C, a significant upregulation pattern was found in the expression of the stress resistance transcripts (SOD2 and NFE2L2) and of CPT2. The relative abundance of ATP5F1A was significantly downregulated for all heat-treated groups compared to the control, while TNFα was downregulated in GCs at 39.5 °C. Expression analyses of stress-related miRNAs (miR-1246, miR-181a and miR-27b) exhibited a significant downregulation in the 40.5 °C group compared to the control, whereas miR-708 was upregulated in the 39.5 and 40.5 °C groups. In conclusion, buffalo GCs exhibited different adaptive responses, to the different heat stress conditions. The integration mechanism between the molecular and secretory actions of the GCs cultured at 40.5 °C might provide possible insights into the biological mechanism through which buffalo GCs react to heat stress.

Tourism