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Abstract Recently, a model equation that describes nonlinear heat waves in a rigid thermal conductor has been
derived. The system of the governing equations for temperature and heat flux is nonlinear. The objective of
the present work is to find a variety of traveling wave solutions of this system of equations in the whole space.
This is achieved by implementing the unified method. The obtained solutions are evaluated numerically and
represented graphically. The behavior of these solutions is investigated, where it is shown that the temperature
and the heat flux attain steady states in space, but increase with time. The effects of the characteristic length,
time, heat flux, and reference temperature are studied via some material data. It is shown that the solutions
may have the form of solitary wave, soliton, or soliton with double kinks. It is observed that the heat flux in
the material is negative, this reflects the fact that heat flux is in the opposite direction of the normal vector to
the material surface on which it is evaluated. The steady state solution of the considered model equation is
studied. It is found that the stability of the solutions depends significantly on the wave number.

1 Introduction

Rigid heat conductors are classified as metal and nonmetal conductors. Examples of metal conductors are
copper, aluminum, silver, and gold. Nonmetal conductors are metalloid, grease and graphite. The uses of
thermal conductors in life manifests via a catenary, which is a system of overhead wires that supply electricity
to a locomotive, streetcar or light rail vehicle. The study of heat wave propagation in continuous media has
found growing interest in the past few studies. Such models have helped revealing interesting phenomena
with practical applications in media of complex structure in which nonlinearity is tightly linked to stability
in working conditions. Coleman and Newman [1] studied the implications of introducing a squared heat flux
term in the free energy of the system, by which the heat flux and the temperature are treated as independent
thermodynamical variables. Tarabek [2] investigated the existence of smooth solutions in one-dimensional
nonlinear thermoelasticity with second sound, whileMessaoudi et al. [3] considered the blow up of solutions in
such systems. Ghaleb [4] and Gorgi andMontanaro [5] discussed models of nonlinear thermo-electroelasticity.
Ghaleb et al. [6] proposed a model of nonlinear thermo-electroelasticity with many nonlinearities in extended
thermodynamics, following Coleman. This model electroelasticity was further investigated by Abou-Dina and
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Ghaleb [7]. Rawy [8] discussed a restriction of this model to thermoelasticity. Shakeriaski and Ghodrat [9]
studied the response of a thermoelastic material under a laser pulse in extended thermodynamics. Mahmoud et
al. [10] studied nonlinear heatwave propagation in a rigid thermal conductor. In [10], solutionswere obtained by
different methods, and the effect of various material parameters was considered. Here is a variety of techniques
which are used to find the exact solutions of nonlinear partial differential equations. Among them, the tanh
and extended tanh methods [11,12]. In [11], the extended tanh method is used to derive new soliton solutions
for several forms of the fifth-order nonlinear KdV equation, Lax, Sawada–Kotera, Sawada–Kotera–Parker–
Dye, Kaup–Kupershmidt, Kaup–Kupershmidt–Parker–Dye, and the Ito equations. Traveling wave solutions
are obtained by using themodified extended tanhmethod for space-time fractional nonlinear partial differential
equations [12]. In [13] the exact solutions of a compoundKdV–Burgers equation are obtained, where in [14] the
solitary wave solutions of the approximate equations for long water waves, the coupled KdV equations, and the
dispersive longwave equations in 2 + 1 dimensions are constructed by using a homogeneous balancemethod. In
[15] explicit formalisms for deep reductions ofmatrix differential equations andDarboux covariance properties
are presented to explicit formulas of N-soliton solutions. In [16] Darboux transformation yields the variable
separable solutions with two space-variable separated functions to find a new saddle-type ring soliton solution
with completely elastic interaction and nonzero phase shifts. In [17] the G̀/G-expansion method is proposed
and used to obtain the (TWS) involving parameters of the KdV equation, the mKdV equation, a variant of
Boussinesq equations, and the Hirota–Satsuma equations. In [18] a generalized G̀/G-expansion method is
proposed to seek exact solutions of the Benjamin–Bona–Mahony equation, (2+1)-dimensional generalized
Zakharov–Kuznetsov equation, and a variant of Bousinessq equations. Triangular periodic wave solutions,
hyperbolic function solutions, and Jacobian elliptic function solutions can be obtained as well. Moreover, it
can also be used for many other nonlinear evolution equations in mathematical physics.

Here, the exact solutions are found by the unifiedmethod (UM) [19]. It haswide applications in investigating
the behavior of the propagation of waves in shallow or in deep water. Solitary waves are also produced in
compensated semiconductors [20] for determining the structure of pulse propagation in optical fibers. Also,
solitary wave conduction appears in superionic conductors [21]. The (UM) covers most of all known methods
in the literature such as the tanh, modified, and extended versions, the F-expansion, the exponential, and
the G̀/G-expansion method [22–26]. The extended unified method [27] proposed by the first author may be
sufficient to replace the analysis of inspecting the symmetries of partial differential equations that result when
using Lie groups.

In the present work, we investigate a one-dimensional nonlinear system of two partial differential equations
describing the propagation of heat waves in an infinite rigid thermal conductor. In these equations, the basic
unknowns are the temperature and the heat flux. Dependence of the wave speed on the unknowns is taken in
consideration. A multitude of wave solutions is obtained and illustrated graphically. This may be of interest in
studying such materials in working conditions.

In viewof the nonlinearity of the governing equations,wehave restricted our considerations to theCattaneo–
Vernotte model, i.e., a model containing only one thermal relaxation time. However, inclusion of more than
one thermal relaxation time is also possible, and will be dealt with in future work. Such complicated models
provide better description of the physics, but involve more mathematical difficulties [28,29]. The model used
in this work finds application in the continuum description of media with complex structure [30].

2 The model equation

Recently, a one-dimensional system of equations has been presented in [10] for the propagation of heat waves
in rigid thermal conductors. The main characteristic of the model is nonlinearity of the equations arising from
two sources:

(i) the presence of a quadratic dependence of the free energy on heat flux.
(ii) the dependence of the thermal relaxation time and the coefficient of heat conduction on temperature and

heat flux. It reads,

(1 + θ)θt + η1(Qx − Q θx − η Q2) = 0,

(1 + (1 + μ1)θ + μ2Q)Qt + 1
η1

(η Q + Qx + η2θ θx + η3Q θx ) = 0.
(1)

In Eq. (1), all symbols are dimensionless
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Table 1 List of symbols

Symbol Name

θ Absolute temperature as measured from a reference temperature
Q Heat flux component
μ1, μ2 Coupling constants
C Specific heat capacity
K Coefficient of heat conduction
K0 Coefficient of heat conduction at reference temperature
K1, K2 Coupling constants for the coefficient of heat conduction
L0 Characteristic length
Q0 Characteristic heat flux
T0 Characteristic time
�0 Reference temperature
ρ Mass density
τ0 Thermal relaxation time at reference temperature
τ1, τ2 Coupling constants for the thermal relaxation time

There, η = L0Q0
θ0K0

, η1 = Q0
√

τ0√
�0CK0

, η2 = K1
K0

, η3 = K2
K0

. Here we are interested in studying the traveling

waves solution (TWS) of Eq. (1). To this issue, we introduce the transformations θ(x, t) = ψ(z), Q(x, t) =
ϕ(z), z = α x + β t. Thus, Eq. (1) reduces to,

β(ψ + 1)ψ ′ − η1
(
ηϕ2 − αϕ′ + αϕ ψ ′) = 0,

ϕ
(
η + βη1μ2ϕ

′ + αη3ψ
′) + ϕ′ (α + βη1 ((μ1 + 1) ψ + 1)) + αη2ψ ψ ′ = 0,

(2)

together with the boundary conditions ϕ(∞) = A1, ψ(∞) = B1, ϕ(−∞) = A2, ψ(−∞) = B2, where Ai
and Bi are given in the parameters α, β, μ1, ηi , i = 1, 2, 3.

Here, the exact solutions of Eq. (2) are found using the unified method. Which asserts that, the solutions of
a nonlinear partial differential equation are expressed in polynomial or rational forms in an auxiliary function
that satisfies appropriate auxiliary equations.

3 Polynomial solutions of Eq. (2)

The solutions are represented in polynomial forms as,

ψ(z) =
n1∑

i=0
ai gi (z), ϕ(z) =

n2∑

i=0
bi gi (z),

g′(z) =
r∑

i=0
ci gi (z).

(3)

We mention that, in Eq. (3) , g(z) is the auxiliary function and the second equation is the auxiliary equation.
Here, ni and r are integers. The objective is to find ni and r. To this end, balance of the nonlinear and higher
order derivative terms is invoked. In Eq. (2), the balance is between ,ψψ ′and ψϕ′. By writing ψ ∼ gn1 ,
ϕ ∼ gn2 and g′ ∼ gr , we get 2n1 + (r − 1) = n1 + n2 + (r − 1). This holds when n1 = n2 and when r is an
arbitrary integer r = 1, 2, 3, ...

3.1 When r = 2 and n = 2

In this case Eq. (3) becomes

ψ(z) = a2g(z)2 + a1g(z) + a0, ϕ(z) = b2g(z)2 + b1g(z) + b0,

g′(z) = c2g(z)2 + c1g(z) + c0.
(4)
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Inserting Eq. (4) into Eq. (2) and setting the coefficients of g(z) j , j = 0, 1, . . ., equal to zero, one gets

a0 = a1c0(αb0η1−β)−αb1c0η1+b20ηη1
a1βc0

, a2 = a1b1(αa1c0−b0η)

4αa1b0c0+2αb1c0−2b20η
,

b2 = 4a1b30η
2(αa1c0−b0η)

4α3a12c03−αb20c0η
2 , c1 = b1c0

b0
, c2 = 4a1b20η

2(αa1c0−b0η)

α(2αa1c0−b0η)(2αa1c0+b0η)
,

η2 = −βb2η1(a2μ1+a2−b2μ2)

2αa22
, η3 = −βη1(a2μ1+a2−b2μ2)

αa2
− a2η

b2
,

μ1 = (2αa1c0−b0η)
(
4α2a12c02−αa1b0(b0+6)c0η+b20η

2
(
3b20η1

2+b0+2
))

b40η
2η12(5b0η−8αa1c0)

,

μ2 = − ((
bη − 2αa1c0

(−8α3a1
3c0

3 − 6α2a1
2(b0 − 2)b0c

2
0η

+α + a1b
2
0c0η

2 (−6b20η
2
1 + 7b0 − 6

) + b0
3η3

(
4b20η1

2 − 2b0 + 1
)))

/
2b0

6η3η12(5b0η − 8αa1c0)
)
, β = 4αb20ηη1

2αa1c0 − b0η
.

(5)

Inserting Eq. (5) into Eq. (4), we have

ψ(z) = 1

P
(4a31c

3
0α

3 − 12a21b0c
2
0ηα2 − 5a1b

2
0c0αη2 + b30η

3

+ 4a21b0c0αη (2a1c0α + b0η) g(z) + 4a21b
2
0η

2(a1c0α − b0η)g(z)2),

P = 4a1b0c0α η (2a1c0α + boη),

ϕ(z) = b0 + 2b20
αc0

g(z) + 4a1b30η
2(a1c0α − boη) g(z)2

4a31c
3
0α

3 − b20c0αη2
.

(6)

The solution of the auxiliary equation is

g(z) =
−M2M1 tanh

(
ηM2(4α2 Aa21b

2
0c

2
0−Ab40η2+c0z)

αc0
√

2αa1c0−b0η (2αa1c0b0η)

)
−4α2a21b0c

2
0+b30η

2

4αa21b
2
0c0η−4a1b30η

2 ,

η > 0, α > 0, c0 > 0, b0 > 0, b0η
4c0α

< a1 <
b0η
c0α

.

(7)

Inserting Eq. (7) into Eq.(6), we get

θ(x, t) = 1

4P
(b0(−40a21c

2
0α

2 + 34a1b0c0ηα − 3b20η
2)

− 2M1M2 tanh

[
(A0 + c0z)ηM2

c0αM1(2a1c0α + b0η)

]
+ bo(8a21c

2
0α

2

− 6a1b0c0ηα + b20η
2) tanh

[
(A0 + c0z)ηM2

c0αM1(2a1c0α + b0η)

]2
,

Q(x, t) = (b20η − 4a1c0α + b0η)sech(
(A0+c0z)ηM2

c0αM1(2a1c0α+b0η)
)2

4a1c0(a1c0α − bη)
, M1 = √

2a1c0α − b0η,

M2 =
√
b30η(8a21c

2
0α

2 + 2a1b0c0ηα − b20η
2), z = α x + β t,

(8)

and P is given by Eq. (6). Here, we focus our study on the behavior of temperature and heat flux of the material
with properties given in Table 2.
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Table 2 Dimensions of the parameters

Quantity Unit Case-I Case-II Case-III

L0 m 0.69 × 10−10 0.69 × 10−10 0.69 × 10−10

φ0 W.m−2 0.42 × 1015 3.422 × 1017 2.421 × 1017

θ0 K 293 293 293
τ0 s.m−3.kg−1.K−1 0.5 × 10−18 0.1 × 10−20 0.8 × 10−21

K0 W.m−1.K−1 1.0 × 104 1.0 × 104 1.0 × 104

C J.kg−1.K−1 0.3 × 105 0.4 × 108 1.6 × 107

Fig. 1 (i)–(vi) When b0 = 10, c0 = 0.1, a1 = 3, α = 2, A0 = 5. Case 1: η = 0.00989078, η1 = 1.00171, Case 2:
η = 0.999621, η1 = 0.999577, Case 3: η = 0.999799, η1 = 1.00011 (see Table 2)
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The numerical results of the solutions in Eq. (8) for θ(x, t) and Q(x, t) are displayed against x for different

values of t in Fig. 1(i)–(ii) and (iv)–(vi), respectively. The values of η = L0φ0
θ0K0

, η1 = Q0
√

τ0√
�0CK0

are taken as in
[10].

(i) Shows a soliton with double kinks for the temperature, which attains a steady state for large x , while it
increases with time t , while (ii) shows a soliton for the heat flux.

(iii) Shows a solitary wave for the temperature, while (iv) shows a soliton for the heat flux. In (v), the
behavior of the TWS of the temperature is solitary, while in (vi) it is soliton for the heat flux.

3.2 When r = 3 and n = 4

In this case, we write,
ψ(z) = a4g(z)4 + a3g(z)3 + a2g(z)2 + a1g(z) + a0,
ϕ(z) = b4g(z)4 + b3g(z)3 + b2g(z)2 + b1g(z) + b0,

g′(z) = (a2 − b2g(z)2)g(z).
(9)

Inserting Eq. (9) into Eq. (2), and by the same way as in the above, we get

b0 = b1 = b3 = 0, a1 = a3 = 0,

b4 =
(
b4

(
M − a2

(
17a30 + 43a20 + 23a0 − 3

)
η
)2

a2
(
17a30 + 43a20 + 23a0 − 3

)
η + M

) /

64a10(a0 + 2)2
(
17a20 + 26a0 − 3

)2 (
37a20 + 98a0 + 61

)
η3η1

4,

b2 = − (
3(5a0 + 8)b2

(
a2

(
17a30 + 43a20 + 23a0 − 3

)
η − M

) /

4a4(37a0 + 61)
(
17a20 + 26a0 − 3

)
ηη1

2
)
,

a2 = 3(a0+1)(3a0+4)b2

2a2(37a0+61)
, a4 = − 3(a0+1)2b4

2a4(37a0+61)
, β= − αη1(μ1+1)

μ2
,

η3 = −βη1(a4μ1+a4+a4μ2)
αa4

− a4η2
b4

, η2 = −βb4η1(a4μ1+a4−3b4μ2)

4αa42
,

μ1 = −8α2a4
(
a30+5a02+7a0+2

)
η1

2+αa2(a0+1)2η+(a0+1)2η2

8a4α2a0(a0+2)2η12
,

α = a2
(
17a03+43a02+23a0−3

)
η−M

16a4(17a03+60a02+49a0−6)η12
, β = −αη1(μ1+1)

μ2 .

(10)

The solution of the auxiliary equation is

g(z) = aA0ea
2z

√
1+b2A2

0e
2a2z

.
(11)

Finally, the solutions are

θ(x, t) = a0 − 3(a0+1)2A4
0b

4e4a
2z

2(37a0+61)
(
A2
0b

2e2a2z+1
)2 + 3(a0+1)(3a0+4)A2

0b
2e2a

2z

2(37a0+61)
(
A2
0b

2e2a2z+1
) ,

Q(x, t) = −
((

3A2
0b

2e2a
2z

(
a0

(
4A2

0b
2e2a

2z + 5
)

+ 7A2
0b

2e2a
2z + 8

)

− M
a2η

+ 17a03 + 43a20 + 23a0 − 3
)/

(4(37a0 + 61)
(
17a20 + 26a0 − 3

) (
A2
0b

2η1e2a
2z + η1

)2))
, z = αx + βt,

M = a2η
√

−(a0 + 1)2
(
17a20 + 26a0 − 3

) (
a20

(
48η12 − 17

) + 2a0
(
96η12 − 13

) + 192η21 + 3
)
.

(12)
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Fig. 2 (i) and (ii) Numerical results of the solutions in Eq. (12) for θ(x, t) and Q(x, t) are displayed against x for different values
of t when b0 = −10, c0 = 0.1, a1 = 3, α = 2, A0 = 5. In case-I, η = 0.00989078, η1 = 1.00171

Fig. 3 (i) and (ii) When α = 1.3, β = −2.5, A0 = −5 and in case-I, from the Table 2, η = 0.00989078, η1 = 1.00171 It is
remarked that the temperature and heat flux increase with time

where bi , i = 2, 4 are given in Eq. (10). The results of the solutions in Eq. (12) for θ(x, t) and Q(x, t)
are displayed against x for different values of t in Fig. 2(i) and (ii). We focus on case-I in Table 2 and

η = L0φ0
θ0K0

, η1 = Q0
√

τ0√
�0CK0

.

(i) and (ii) show that the temperature and the heat flux decrease with time and attain steady states in space.
The qualitative behavior is solitary wave.

4 Rational solutions of Eq. (2)

A rational solution (TWS) of Eq. (2) is written in the form

ψ(z) = a1g(z)+a0
s1g(z)+s0

, ϕ(z) = b1g(z)+b0
s1g(z)+s0

,

g′(z) =
j=k∑

j=0
c j g(z) j .

(13)

Here, we consider two cases.
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4.1 When k = 2

The auxiliary equation reads

g′(z) = c2g(z)
2 + c1g(z) + c0. (14)

From Eqs. (13) and (14) and insertion into Eq. (2), we have

c2 = 1

2s1
, c1 =

2β η
(√

2η12 + 1η12 − √
2η12 + 1 − 1

)

α2η1
(
2η21 − 3

) , c0 = 0 ,

a1 = 1

c2
− s1, a0 = 4βηη1

3s21 − α2s0
α2

(
η21 − 1

) , b1 = 2βη1s1
α

,

b0 = a1s0(β − αb1c2η1) + a0s1(αb1c2η1 − β) + b1η1s1(αc2s0 − b1η)

αc2η1s21
,

s0 = −
4

(
α2βηs12 − α2βη

(
η1

2 − 1
) √

2η12 + 1s12
)

α4
(
2η13 − 3η1

) ,

η2 =
(
2αβ

(
2η1

6 − 3η1
4 − 2

√
2η12 + 1η1

2 + 2
√
2η12 + 1 + 2

)

+ α2η1

(
2η1

2 − 3
) (√

2η12 + 1η21 −
√
2η12 + 1 − 1

)
+ 2β2η1

(
2

(√
2η12 + 1 + 1

)
(μ1 + 2)

+ η21

(
−2

√
2η12 + 1 + 2μ1 + 2

)
+ 2η1

6
(√

2η12 + 1 + 1

√
2η12 + 1μ1

)
− η1

4
(
3
√
2η12 + 1μ1 + 3

√
2η12 + 1 + 4μ1 + 7

)))
/

αη1

(
−2η1

2 +
√
2η12 + 1 + 1

) (
−2η1

4 + η1
2 + √

2η1 + 1 + 1
)

,

η3 =
(

−α3η1

(
2η1

2 − 3
) (

−2η1
2 +

√
2η12 + 1 + 1

)
+ 2α2β

(
2

(√
2η12 + 1 − 1

)
η1

4 + 2

(√
2η12 + 1 + 1

)

−η1
2
(
3
√
2η12 + 1 + 1

))
+ 2αβ2η1

(
2η1

4
(√

2η12 + 1 − 1

)
+2

(√
2η12 + 1 + 1

)
− η1

2
(
3
√
2η12 + 1 + 1

))

+ 4β3
(
2
√
2η12 + 1η1

6 + 2η1
2 + 2

(√
2η12 + 1 + 1

)

−η1
4
(
3
√
2η12 + 1 + 4

))
μ2

)
/

(
2α2β

(
−2η1

2 +
√
2η12 + 1 + 1

)
− 2η1

4 + η1
2 +

√
2η12 + 1 + 1

)
.

(15)

The solution of the auxiliary equation gives rise to

g(z) = − 1

α2η1(−3 + 2η21)
(2s1β η

(
−1 +

√
1 + 2η21(−1 + η21)

)

(1 + tanh((Ao + z) β η

(
−1 +

√
1 + 2η21(−1 + η21))

)
.

(16)

Finally the solutions are

θ(x, t) = P1
R1

, P1 = 1 − 4η41 +
√
1 + 2η21 (1 + η21) + 2η21 + (−1 +

√
1 + 2η21

(−1 + η21)
)

(
1 + tanh((A0 + αx + βt) β η

(
−1 +

√
1 + 2η21(−1 + η21)

))
,

R1 =
(

−1 +
√
1 + 2η21(−1 + η21)

)
(−1 + tanh((A0 + αx + βt)
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βη

(
−1 +

√
1 + 2η21(−1 + η21))

)
,

Q(x, t) =
2βη1

⎛

⎝tanh

⎛

⎝
βη

(√
2η21+1η1

2−
√

2η21+1−1

)
(A0+z)

α2η1(2η21−3)

⎞

⎠+1

⎞

⎠

α

⎛

⎝tanh

⎛

⎝
βη

(√
2η21+1η1

2−
√

2η21+1−1

)
(A0+z)

α2η1(2η21−3)

⎞

⎠−1

⎞

⎠

, z = αx + βt.

(17)

The numerical results of the solutions in Eq. (17) for θ(x, t) and Q(x, t) are displayed against x for different
values of t in Fig. 3(i) and (ii), respectively.

4.2 When k = 2

Here, we take the auxiliary equation

g′(z) = a − bg(z)2. (18)

By the same way, we have

a = bs21
s20

b1 = − b0s1
s0

,

a1 = s1
(
a20bβs0+a0bs0(βs0−αb0η1)+b0η1

(
2αbs02+b0ηs1

))

bs02(a0β−αb0η1+βs0)
,

a0 = 1
2bs1s0β2η

(−2b2s30α
2βη1 + bs1s0βη(−2s0β + b0αη1) + H),

η2 = (
2bs0a0β − αb0η1 + βs0

(
2a02bβ2η1(μ1 + 1)s0

η + s1
(
βb20η1

2(μ1 + 1) + αb0η1s0 − βs02
) + 2bs20(βs0

(α + βη1) + αb0η1(βη1μ1 − α)) + a0βs0
−2αbb0η12(μ1 + 1) + 2bs0(α + βη1(μ1 + 2)) − ηs1

))
/

(
α2αbs20 + b0ηs1η1

(
2a02bβs0

2a0bs0(βs0 − αb0η1) + b0η1
(
2αbs02 + b0ηs1

)))
,

η3 = (
s0a0β − αb0η1 + βs0

(
2bηs1 − b0η2s21

βb02η1μ2 + b0s0(α + βη1) − αs02 + 4b2s0
(
αs02(α + βη1)

+a0βμ2(a0β − αb0η1) + βμ2s0(a0β + αb0η1))))/
(
α2αbs02 + b0ηs1

(
2a20bβs0 + b0

2a0bs0(βs0 − αb0η1) + η1
(
2αbs02 + b0ηs1

)))
,

H = (2bs20α + b0s1η)
√
bs1s0β2η1

√−2s1βη + bs0α2η1
.

(19)



2536 H. I. Abdel-Gawad et al.

Fig. 4 (i) and (ii). When A0 = −5, b = 0.07, s1 = 2.5, s0 = 1.5, b0 = 5, α = 1.5, β = −1.5, and η = 0.00989078, η1 =
1.00171

Finally, the solutions are,

θ(x, t) = (
2α2b2βηη1s1s03(αb0η1 − βs0) + 4α4b3βη1

2s50

α(−b)η1s02
(
3β2b0η2s21 + 2αH

) + βη(−s1)
(
βb02η2η1s12 + Hs0

)

+ (
2α2b2βηη1s1s03(βs0 − αb0η1) − 4α4b3βη1

2s05

αbη1s02
(
2αH − β2b0η2s12

) + βη(+s1)
(
Hs0 − βb02η2η1s12

))

tanh
(
s0(A0−bz)

s1

))
/
(
s1s0βη

(
2α2b2βη1s03

α + bβb0ηη1s1s0 − H) tanh
(
s0(A0−bz)

s1

)
− 1

)
,

Q(x, t) = b0(1+tanh( s0(A0−bz)
s1

)

s0(−1+tanh( s0(A0−bz)
s1

)
, z = βt + αx .

(20)

The numerical results of the solutions in Eq. (20) for θ(x, t) and Q(x, t) are displayed against x for different
values of t in Fig. 4(i) and (ii), respectively. (i) and (ii) show that the temperature and heat flux increase with
time.

It is worthy to mention that the role of varying the parameters η2, η3, and μ2 is considered, but we have
observed that there is no significant contribution. So, the figures were omitted.

5 Stability analysis

Here, we analyze the stability of the steady state solutions of Eq. (1). The steady state solutions hold by setting
θt = 0 and Qt = 0, where θ(x, t) = h(x) and Q(x, t) = p(x), which satisfy the equations

−ηp(x)2 − p(x)h′(x) + p′(x) = 0,

η2h(x)h′(x)] + p(x)η + η3h′(x)) + p′(x) = 0.
(21)

The solutions are p(x) = 0, h(x) = h0.
We write

θ(x, t) = h0 + ε1e
λt H(x), Q(x, t) = ε2e

λt K (x). (22)
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Fig. 5 (i), (ii), and (ii), Eigenvalue λ against η, η1, andm, respectively .When (i) h0 = 2,m = 0.5, μ1 = 0.3, η1 = 0.1, η2 = 0.1,
(ii) h0 = 2,m = 0.5, μ1 = 0.3, η = 0.5, η2 = 1, and (iii) h0 = 0.2, η = 0.5, η1 = 0.2, η2 = 0.1, μ1 = 0.3.

Substituting Eq. (22) into Eq. (1), we get

M

(
ε1
ε2

)
= 0, M =

(
m11 m12
m21 m22

)
,

m11 = λh(x)H(x) − η1 p(x)H ′(x) + λH(x),

m12 = −η1h′(x)K (x) − 2ηη1 p(x)K (x) + η1K ′(x),

m21 = η2H(x) h′(x) + η2h(x) H ′(x) + η3 p(x) H ′(x),

m22 = η3h′(x)K (x)
η1

+ λμ1h(x)K (x) + λh(x)K (x)

+λμ2 p(x)K (x) + η K (x)
η1

+ λK (x) + K ′(x)
η1

,

(23)

which gives rise

η1
(
η2H(x)h′(x) + H ′(x)(η2h(x) + η3 p(x))

) (
K (x)

(
h′(x) + 2ηp(x)

) − K ′(x)
)

+ 1
η1

[λ(h(x) + 1) H(x) − η1 p(x)H ′(x)(K (x)(η + η1λ + η1λ

η3h′(x) + (μ1 + 1)h(x) + η1λμ2 p(x)
) + K ′(x)

)] = 0.
(24)

The eigenvalue problem in Eq. (24) is subjected to the boundary conditions (BCs) H(±∞) = 0 and K (±∞) =
0. To this issue, we assume that

H(x) = H0

{
e−m x m > 0, x > 0
em x m > 0, x < 0,

K (x) = K0

{
e−m x m > 0, x > 0
em x m > 0, x < 0.

(25)

Substituting Eq. (25) into Eq. (24), we have,

λ =
−η − ηh0 ±

√
(h0 + 1)

(
4η13η2h0m2(h0μ1 + h0 + 1) + (h0 + 1)(m − η)2

) + h0m + m

2η1(h0 + 1)(h0μ1 + h0 + 1)
. (26)

We mention that the steady state solution is saddle node. The results in (26) are shown in Fig. 5 (i) and (ii).

(i) the solutions are stable or unstable, and the point at m = 0.5 is a saddle point.
(ii) the solutions are stable or unstable with critical point η1 = 0.01.
(iii) when m > 0.5 the solutions are stable, when m < 0.5 the solutions are stable or unstable and the point at

m = 0.5 is a saddle point.
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6 Conclusions

The temperature–heat flux model equation for nonlinear heat waves in a rigid conductor is considered. Exact
traveling waves solutions are found using the (UM). The results are illustrated in a variety of graphs. It is found
that nonlinear heat waves are solitary waves. The attained states in space and the temperature and heat flux
increase with time. The effects of the characteristic parameters, length, time, and heat flux are investigated
and shown in a graph. It is found that the solutions are solitary, soliton, or soliton with double kinks. It is
remarked that the stability of the solutions depends critically on the wave number of the perturbed solutions
with a critical value, above it the solutions are stable. Otherwise they are unstable.

In view of the nonlinearity of the governing equations, considerations were confined to a single thermal
phase lag. Cases with more than one thermal relaxation time will be considered in future work.
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