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In the context of the Supersymmetric (SUSY) B − L (Baryon minus Lepton number) model with
inverse seesaw mechanism, we calculate the one-loop radiative corrections due to right-handed
(s)neutrinos to the mass of the lightest Higgs boson when the latter is Standard Model (SM)-
like. We show that such effects can be as large as O(100) GeV, thereby giving an absolute upper
limit on such a mass around 180 GeV. The importance of this result from a phenomenological point
of view is twofold. On the one hand, this enhancement greatly reconciles theory and experiment,
by alleviating the so-called ‘little hierarchy problem’ of the minimal SUSY realization, whereby the
current experimental limit on the SM-like Higgs mass is very near its absolute upper limit predicted
theoretically, of 130 GeV. On the other hand, a SM-like Higgs boson with mass below 180 GeV
is still well within the reach of the Large Hadron Collider (LHC), so that the SUSY realisation
discussed here is just as testable as the minimal version.

PACS numbers:

The Higgs boson is the last missing particle in the SM.
Higgs boson discovery at the LHC is, therefore, crucial
for its validity as a low energy approximation of a new
physics scenario valid to high energy scales. A possi-
bility for the latter emerges in SUSY theories, wherein
the Higgs mechanism is retained for mass generation and
multiple Higgs bosons appear in order to cancel anoma-
lies. In addition, the stabilization of the Higgs mass
against loop corrections (gauge hierarchy problem) is
possibly the strongest motivation for a SUSY theory of
nature. Hence, Higgs boson discovery at the LHC is also
crucial for SUSY as a whole. A consequence of a SUSY
Higgs sector is the existence of a stringent upper bound
on the mass of the lightest SUSY Higgs boson, h, when
the latter is SM-like. In the Minimal Supersymmetric
Standard Model (MSSM), this value is mh <∼ 130 GeV.
Therefore, non-observing at the LHC a SM-like Higgs
boson lighter than 130 GeV would rule out the MSSM.
In detail, in the MSSM, the mass of the lightest Higgs

state can be approximated, at the one-loop level, as [1]
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where g is the SU(2) gauge coupling and mt̃1,2
are the

two stop physical masses. The ratio of the Electro-Weak
(EW) Vacuum Expectation Values (VEVs) is given by
tanβ = v2/v1. Note that the factor 3 in the above top-
stop correction is due to color. If one assumes that the
stop masses are of order TeV, then the one-loop effect
leads to a correction of order O(100) GeV, which implies
that

mMSSM
h

<∼
√
(90 GeV)2 + (100 GeV)2 ≃ 135 GeV. (2)

It is worth mentioning that the two-loop corrections re-
duce this upper bound by a few GeVs, to the aforemen-
tioned 130 GeV or so value [2].

Experimental evidence now exists for physics beyond
the SM, in the form of neutrino oscillations, which im-
ply neutrino masses [3]. In turn, the latter imply new
physics beyond not only the SM, but also the MSSM.
Right-handed neutrino superfields are usually introduced
in order to implement the seesaw mechanism, which pro-
vides an elegant solution for the smallness of the left-
handed neutrino masses. Right-handed neutrinos, which
are heavy, can naturally be implemented in the SUSY
B − L extension of the SM (hereafter, the ‘SUSY B − L
model’ for short), which is based on the gauge group
SU(3)C × SU(2)L ×U(1)Y ×U(1)B−L. In this scenario,
the scale of B − L symmetry breaking is related to the
soft SUSY breaking scale [4]. Thus, the right-handed
neutrino masses are naturally of order TeV and the Dirac
neutrino masses must be less than 10−4 GeV (i.e., they
are of order the electron mass) [5]. Nevertheless, due to
the smallness of Dirac neutrino Yukawa couplings, the
right-handed neutrino sector has very suppressed inter-
actions with the SM particles. Therefore, the predictions
of such a SUSY B−L model (i.e., with standard seesaw
mechanism) remain close to the MSSM ones. In particu-
lar, the discussed MSSM prediction for the lightest Higgs
boson mass upper bound remains intact. Same conclu-
sion is obtained in the context of the minimal Supersym-
metric seesaw model, where the right-handed neutrino
masses are of order 1013 GeV [6].

The SUSY B − L model with inverse seesaw, where
Dirac neutrino Yukawa couplings are of order 1, has re-
cently been considered [7]. The superpotential of the
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leptonic sector associated to this model is given by

W =YELH1E
c+YνLH2N

c+YSN
cχ1S2+µH1H2+µ

′χ1χ2,
(3)

where χ1,2 are SM singlet superfields with B−L charges
+1 and −1, respectively. Therefore, U(1)B−L is spon-
taneously broken by the VEVs of the scalar components
of these superfields. Ni are three SM singlet chiral su-
perfields with B − L charge = −1, introduced to cancel
the U(1)B−L anomaly. The fermion components of Ni

account for right-handed neutrinos. Finally, chiral SM
singlet superfields S1,2 with B − L charge = +2,−2 are
considered to implement the inverse seesaw mechanism.
Note that a Z2 symmetry is assumed in order to prevent
the interactions between the field S1 and any other field.
After B−L and EW symmetry breaking, the neutrino

Yukawa interaction terms lead to the following expres-
sion:

Lν
m = mDν̄LN

c +MN N̄ cS2, (4)

where mD = Yνv sinβ and MN = YSv
′ sin θ, with

tanβ = v2
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2
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⟨χ2⟩ , v
2 = v21 + v22 ,

and v′2 = v′21 + v′22 . Light neutrino masses are related to
a small mass term µSS̄

c
2S2, with µS <∼ O(1) KeV, which

can emerge at the B−L scale from a non-renormalizable

term in the superpotential,
χ4
1S

2
2

M3
I
, with MI an interme-

diate scale of order O(107) GeV. Note that the non-
renormalizable scale MI can be related to a more fun-
damental scale and couplings of the S2 and χ fields with
integrated out fields and a suppression factor. In this
case one can write for instance 1/M3

I ∼ λ4/M3
∗ , there-

fore, if λ ∼ O(0.01), then M∗ is of order 1012 GeV. Thus,
the Lagrangian of neutrino masses, in the flavor basis, is
given by:

Lν
m = mDν̄LN

c +MN N̄ cS2 + µSS̄c
2S2. (5)

In the basis {νL, N c, S2}, the 3×3 neutrino mass matrix
of one generation takes the form:

Mν =

 0 mD 0
mD 0 MN

0 MN µS

 . (6)

Thus, the physical light and heavy neutrino masses are
given by
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=
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Therefore, neglecting µS one finds

m2
νℓ

≃ 0, m2
νH,H′ ≃ m2

D +M2
N . (9)

In addition, the gauge eigenstates {νL, N c, S2} can be
written in terms of the physical eigenstates as follows [10]

νL ≃ νℓ + αa2 νH + αa2 νH′ ,
N c ≃ a1 νℓ − ανH + ανH′ ,
S2 ≃ −a2 νℓ + ανH + ανH′ ,

(10)

where α ∼ sin(π/4), a1 ∼ O(10−10), and a2 ∼ O(0.1). In
this respect, new couplings among the heavy neutrinos,
the charged leptons and W bosons are generated. These
couplings are of order the gauge coupling times the mix-
ing angles between light and heavy neutrinos. Therefore,
the heavy neutrinos of this class of models may have a
clean signature at the LHC [7] and imply very interesting
phenomenological implications [8].

The sneutrino mass matrix is obtained from the sneu-
trino scalar potential, which is given by

Vscalar = VF + VD + Vsoft, (11)

where VF is defined as usual as |∂W/∂ϕ|2 and

VD=
M2

Z cos 2β

2
ν̃∗Lν̃L+M2

Z′ cos 2θ
(̃
ν∗Lν̃L−ν̃∗Rν̃R+2S̃∗

2 S̃2

)
,

where MZ′ is the mass of the B − L neutral gauge bo-
son Z ′, given by M2

Z′ = g′′2v′2. From the LEP II exper-
imental limits, one finds MZ′/g′′ > 6 TeV [9]. Finally,
Vsoft is defined as

Vsoft = m2
0

∑
ϕ

|ϕ|2 + 1

2
M1/2

∑
i

λ̃iλ̃i +
[
A0

(
YνÑ

cL̃H2 + YeẼ
cL̃H1 + YSÑ

cS̃2χ1

)
+B0

(
µH1H2 + µ′χ1χ2

)
+ h.c.

]
.(12)

Here, the sum in the first term runs over ϕ =
H1,H2, χ1, χ2, L̃, Ẽ

c, Ñ c, S̃1, S̃2 and the sum in the sec-

ond term runs over the gauginos: λi = B̃, W̃ a, g̃a, Z̃ ′.
Note that in the above expression, the trilinear coupling
is defined, as usual, by Aij = A0Yij .
In general, one finds that the sneutrino mass matrix,

for one generation, in the basis (ν̃L, ν̃
∗
L, ν̃R, ν̃

∗
R, S̃2, S̃

∗
2 ),

can be written as a 3× 3 matrix, with entries multiplied
by the identity 2 × 2 matrix [10], i.e., with one gener-
ation, one obtains two left-handed sneutrinos ν̃L1,2 and
four right-handed sneutrinos ν̃H3,4,5,6 :
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If one chooses the A-terms such that elements 12 and 23
vanish, then the sneutrino masses can be written as

m2
1 = d,

m2
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2

[
(a+ f) +

√
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]
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where a = m2
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+m2

D +
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Z

2
cos 2β +M2
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c = mDMN ,
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Ñ
+m2
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f = m2
S̃
+M2

N + 2M2
Z′ cos 2θ. (15)

If one assumes that mL̃ = mÑ = mS̃ = m̃ and neglects
the D-term, then the sneutrino masses can be written as

m2
ν̃L1,2

= m̃2, m2
ν̃H3,4,5,6

= m2
D +M2

N + m̃2. (16)

It is important to note that, unlike the squark sec-
tor, where only the third generation (stops) has a large
Yukawa coupling with the Higgs boson, hence giving the
relevant contribution to the Higgs mass correction, all
three generations of the (s)neutrino sector may lead to
important effects since the neutrino Yukawa couplings are
generally not hierarchical. Also, due to the large mixing
between the right-handed neutrinos Ni and S2j , all the
right-handed sneutrinos ν̃H are coupled to the Higgs bo-
son H2, hence they can give significant contribution to
the Higgs mass correction. In this respect, it is useful
to note that the stop effect is due to the running of 12
degrees of freedom (3 colors times 2 charges times 2 for
Left and right stops) in the Higgs mass loop corrections.
Also, in the case of right-handed sneutrinos, there are 12
degrees of freedom (3 generations times 4 eigenvalues).

As example of a generic 3 × 3 neutrino Yukawa cou-
pling, Yν , we consider Yν = mD/v2, with the Dirac neu-
trino mass matrix mD [8]

mD = UMNS

√
mphys

νℓ R
√
µ−1
S MN , (17)

where R is an arbitrary orthogonal matrix and UMNS

is the light neutrino mixing matrix. If we assume that

R = I3×3 and
√

mphys
νℓ /µS ∼ O(0.1), then we find Yν ≃

UMNS. Note that here we assume a hierarchical µs in
order to account for a possible hierarchy between light
neutrino masses. For simplicity, we also assume universal
Majorana neutrino masses, MN = diag{M,M,M}.

The one-loop radiative correction to the effective po-
tential is given by the relation

∆V =
1

64π2
STr

[
M4

(
log

M2

Q2
− 3

2

)]
, (18)

where M2 is the field dependent generalized mass ma-
trix and Q is the renormalization scale. The complete
effective potential is Q independent. However, the effec-
tive potential at one-loop level contains implicit depen-
dence on this scale. The renormalization scale Q is usu-
ally chosen such that the large logarithms, appearing in
higher order corrections, are suppressed. The supertrace
in Eq.(18) is defined by

STrf(M2) =
∑
i

(−1)2Ji(2Ji + 1)f(m2
i ). (19)

Here m2
i is a field dependent squared mass eigenvalue

of a particle with spin Ji. Therefore ∆V , due to one
generation of neutrinos and sneutrinos, is given by

∆Vν,ν̃ =
1

64π2

[ 6∑
i=1

m4
ν̃i

(
log

m2
ν̃i

Q2
− 3

2

)
− 2

3∑
i=1

m4
νi

(
log

m2
νi

Q2
− 3

2

)]
. (20)

The first sum runs over the sneutrino mass eigenvalues,
while the second sum runs over the neutrino masses (with
vanishing mν1). In case of our above example, where

Yν ∼ UMNS, one finds that the total ∆V is given by three
times the value of ∆V for one generation. This factor
then compensates the color factor of (s)top contributions.
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The genuine B − L correction to the CP-even Higgs
mass matrix, due to the (s)neutrinos, at any renormal-
ization scale Q, is given by

∆M2
ij =

1

2

[
∂2(∆V )ν,ν̃
∂Hi∂Hj

− δij
2Hi

∂∆Vνν̃

∂Hi

]
Hi=vi

. (21)

From the (s)neutrino masses, given in Eqs. (9)

and (16), one can easily show that, for one generation,
we have

δM2
11 = δM2

12 = δM2
21 = 0, (22)

δM2
22 =

1

16π2

[(
∂m2
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∂v2

)2

log
m2

ν̃H

Q̂2
−
(
∂m2
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∂v2

)2

log
m2
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Q̂2

]
=

m4
D

4π2v22
log

m2
ν̃H

m2
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. (23)

Therefore, the complete one-loop squared-mass matrix
of CP-even Higgs bosons will be given by M2

tree + ∆M2,

with ∆M2 =

(
0 0
0 δ2t + δ2ν

)
, where δ2t refers to the

(s)top contribution presented in Eq. (1) and δ2ν is the
(s)neutrino correction given in Eq. (23). In this case,
the lightest Higgs bosons mass is given by

m2
h =

1

2
(M2

A +M2
Z + δ2t + δ2ν)

1−√1− 4
M2

ZM
2
A cos2 2β + (δ2t + δ2ν)(M

2
A sin2 β +M2

Z cos2 β)

(M2
A +M2

Z + δ2t + δ2ν)
2

 (24)

For MA ≫ MZ and cos 2β ≃ 1, one finds that

m2
h ≃ M2

Z + δ2t + δ2ν . (25)

If m̃ ≃ O(1) TeV, Yν ≃ O(1) and MN ≃ O(500) GeV,
one finds that δ2ν ≃ O(100)2, thus the Higgs mass will be

of order
√
(90)2 +O(100)2 +O(100)2 ≃ 170 GeV. It is

worth mentioning that the Yukawa coupling Yν at theB−
L scale, MB−L, can be derived from the renormalization
group equations [13]:

16π2 dYν

dt
= 3YνY

†
ν Yν + Yν

[
Tr
(
YνY

†
ν

)
+ 3Tr

(
YuY

†
u

)
− 3

2
g2B − 3

5
g21 − 3g22

]
+ YνY

∗
S Y

T
S + Y T

e Y ∗
e Yν (26)

16π2 dYu

dt
= 3YuY

†
uYu + Yu

[
Tr
(
YνY

†
ν

)
+ 3Tr

(
YuY

†
u

)
− 1

6
g2B − 13

15
g21 − 3g22 −

16

3
g23

]
+ YuY

†
d Yd (27)

16π2 dYS

dt
= 2YSY

†
SYS + YS

[
Tr
(
YSY

†
S

)
− 9

2
g2B

]
+ 2Y T

ν Y ∗
ν YS (28)

By ignoring the small Yukawa couplings: Yd and Ye, one
can solve these equations numerically and verify that for
Yt ≃ O(1) the neutrino Yukawa coupling, Yν , at TeV
scale, can be of order one as well. As shown in Fig. 1,
these values of Yν are sufficient for enhancing the Higgs
mass significantly. In this figure we present the Higgs
mass, mh, as a function of the sneutrino mass, mν̃ , for
MN = diag{300, 400, 500} GeV and Yν couplings are

given by: Yν = diag{0, 0, 0.85}, Yν = 0.85 I3×3, and
Yν = UMNS. As can be seen, the neutrino Yukawa cou-
plings indeed play a crucial rule in enhancing the lightest
Higgs mass, mh. Also the large mixing in UMNS is favored
by a large Higgs mass.

Finally, we consider the impact of the trilinear cou-
plings AN and AS , which contribute to the off-diagonal
elements of the sneutrino mass matrix (13). For sim-
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FIG. 1: Lightest Higgs boson mass versus the light-
est sneutrino mass for MN = diag{300, 400, 500}, Yν =
diag{0, 0, 0.85}, 0.85 I3×3, and UMNS (for curves from bottom to
up respectively).

-6000 -4000 -2000 0 2000 4000 6000

140

150

160

170

180

h

0

 

 m

A

FIG. 2: Lightest Higgs boson mass as a function of the triliniar
coupling A0 for MN = diag{300, 400, 500}, m̃ = 2500 I3×3, and
Yν = diag{0, 0, 0.85}, 0.85 I3×3, and UMNS (for curves from bot-
tom to up respectively).

plicity, we assume AN = AS = A0. In Fig. 2 we dis-
play the dependence of mh on A0 for the above men-
tioned three examples of Yν , m̃ = 2.5 I3×3 TeV, and
MN = diag{300, 400, 500} GeV. From this figure, it can
be noted that a large value of A0 may enhance the value
of the Higgs mass by about 20 GeV. This can be under-
stood as follows: for non-vanishing A0, one may approx-
imate the sneutrino masses as

m2
ν̃ ≃ m2

ν̃

∣∣∣
A0=0

+ αmD A0, (29)

where the coefficient α can be fixed by fitting the sneu-
trino masses with this expression. Here we kept the
dependence on the trilinear coupling to be consistent
with the definition of the A-term that led to the expres-

sions in the sneutrino squared-mass matrix (13), namely
Aij = A0Yij . In this case, Eq. (23) can be written as

δM22 ≃ m4
D

4π2v22

[
log

m2
ν̃H

m2
νH

+ log

(
1 +

αmD A0

m2
ν̃H

)]
.(30)

Thus, for A0 of order TeV, one finds that the Higgs mass
is enhanced by few GeVs.

For such large Aν-term, one should be careful with pos-
sible B −L symmetry breaking through a non-vanishing
vev of the sneutrino, which also breaks R-parity and
makes the model quite involved. In order to avoid this
minimum one has to satisfy the following constraint,
which is very similar to the usual one imposed in the
MSSM to avoid the electric-charge and color symmetry
breaking minimum [11], namely

|Aν |2 ≤ 3
(
m2

L +m2
N +m2

H2

)
. (31)

Since we have mL and mN of order |Aν |, it is clear that
this minimum can be safely avoided.

It is interesting to note that recent results from the
CMS and ATLAS experiments may indicate the existence
of a Higgs boson with mass around 125 GeV [12]. In this
case, it is remarkable that in the model described herein
the required loop corrections to the Higgs mass can be
obtained easily from a combination of the well established
MSSM ones and those specific to the B − L sector with
stop and sneutrino masses that are smaller than 1 TeV,
hence promptly testable at the LHC, while retaining a
nature for the light Higgs state which is rather SM-like.

In conclusion, we have calculated the one-loop radia-
tive corrections to the lightest SM-like Higgs boson mass,
due to the right-handed (s)neutrinos in a SUSY B − L
extension of the SM with inverse seesaw mechanism. We
have shown that the upper bound on the Higgs mass can
be enhanced to be around 180 GeV. This enhancement
may alleviate a possible conflict between the experimen-
tal limits from Higgs searches at the LHC and the ab-
solute upper limit predicted in MSSM theoretically, of
130 GeV. It is remarkable that our result remains valid
for any model beyond the MSSM with TeV scale right-
handed neutrinos (including Left-Right, Pati-Salam and
other models derived from SO(10)).
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