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ABSTRACT 

 

This paper presents a study of the effect of local plate buckling on 

the design of plate girder sections in three internationally 

recognized codes, the American AISC and AASHTO, and the 

European EC3. The design provisions related to the local buckling 

of flange plates under uniform compression, web plates under 

uniform bending, and web plates under shear according to the three 

codes are compared over a wide range of design parameters. The 

results show that considerable differences exist between the 

American and European codes when the design is governed by 

elastic buckling. Numerical solutions of the elastic buckling of 

plate girder slender sections under uniform bending using the finite 

strip method are used in a parametric study to evaluate the effect of 

actual plate edge conditions on the elastic buckling strength of 

these sections. The results of the parametric study show that the 

idealized edge conditions are always conservative for compression 

flange buckling and not always conservative for web bend 

buckling.  

 

1. INTRODUCTION 
 

The design of plate girder sections is usually governed by flexural 

strength and shear strengths limit states. Local plate buckling 

affects the calculation of the cross section resistance related to 

compression flange local buckling, web bend buckling in the 

flexural strength limit state and web shear buckling in the shear 

strength limit state. Other limit states such as lateral torsional 

buckling, tension flange yielding, and fatigue are not covered in 

this paper.  
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Generally, a three-range design format is followed depending on 

the value of a slenderness parameter, λ, which equals the width-to-

thickness ratio of the plate component considered. When the 

slenderness ratio λ is less than a value λp, the section can reach its 

plastic moment capacity and is classified as compact in the 

American codes AISC [2005] and AASHTO [2004], and as class 2 

in the European Code EC3 [2005]. When λp < λ < λr, the section 

strength is limited by its yield moment and is called non-compact 

in the American codes AISC and AASHTO, and class 3 in the 

European code EC3. When λ > λr, the section strength is governed 

by elastic buckling and the section is slender in AISC/AASHTO 

and class 4 in EC3. Details of the governing equations used to 

calculate the cross section resistances in each case are given in the 

respective codes and several papers such as White [2008] and 

White and Barker [2008]. Summary of code provisions related to 

plate buckling in the three considered codes is given in the 

Appendix to this paper. 

 

Most design codes use basically the same approach to determine 

the design strength for compact and non-compact sections. As a 

result, design codes give comparable results for these sections. On 

the other hand, different approaches are used in present codes to 

determine the slender section design strength. 

 

For the flexural strength limit states, AISC and AASHTO use a 

reduced stress which is based on the theoretical elastic buckling 

solution of the plate buckling problem. EC3 uses a linear stress 

distribution over an effective width to replace the actual nonlinear 

stress distribution over the buckled plate. These two approaches for 

handling local flexural buckling of slender plates are very distinct 

and therefore give different results. Generally, the reduced stress 

method is much easier to apply but does not benefit from the 

additional post buckling strength considered in the effective width 

method.  

 

For the shear strength limit state, most codes use the same 

approach to calculate the cross section strength based on the 

theoretical shear buckling resistance with allowance made for post 

buckling due to tension field action. The post buckling strength in 

AISC and AASHTO is based on Basler model which can only be 

applied to girders having closely spaced transversal stiffeners. On 
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the other hand, the post buckling strength in EC3 is based on 

Cardiff and Hoglund models which can be applied to both stiffened 

and unstiffened girders. Differences between codes exist because 

different shear failure models are used.  

 

In the following sections, the buckling strength determined 

according to the American and European codes are compared over 

a wide range of web and flange slenderness ratios for the three 

limit states of compression flange local buckling, web bend 

buckling, and shear buckling.  Since each code uses a different 

format for the flexural strength limit states, the AISC and EC3 

equations have been expressed in terms of the nominal flexural 

strength Fn instead of the nominal moment strength Mn by dividing 

the moment equations by the elastic section modulus Sx. The 

resulting equations were then used to plot the relation between the 

normalized stress (Fn/Fy) against the respective slenderness ratio λ. 

The limiting slenderness ratios defining compact, non-compact 

limits were calculated using the values Fy= 345 MPa and E= 

2.04*10
5
 MPa.  

 

2. COMPRESSION FLANGE LOCAL BUCKLING 
 

Figure 1 shows the comparison of the compression flange local 

buckling provisions according to the three codes. The AISC results 

are presented for the two case of compact web (CW: λw = 80) and 

slender web (SW: λw  =160). The theoretical elastic buckling stress 

obtained as the solution to the plate buckling problem assuming 

simple-free edge conditions (kf=0.43) is also shown on the Figure. 

The comparison among the three codes reveals the following: 

 

1- The limiting slenderness ratios defining compact and non-

compact limits vary considerably between American and European 

codes as shown in Table 1. 

2- AASHTO neglects web plastification effect for compact flanges. 

3- For slender flanges, only AISC considers the effect of web 

slenderness on compression flange buckling. 

4- For slender flanges, both AISC and AASHTO do not consider 

post buckling strength so that the results of applying EC3, which 

considers post buckling, are much larger, especially at larger 

slenderness ratios as shown in Figure 5a. 
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Fig. 1   Compression Flange Buckling Stress 

 

Table 1: Slenderness Limits in Different Codes 

Code Compact Non-compact  

1- Compression Flange Local Buckling: 

AISC/AASHTO 9.24 16.33 

EC3 8.25 11.55 

2- Web Bend Buckling: 

AISC/AASHTO 91.43 138.61 

EC3 68.50 102.34 

3- Web Shear Buckling: 

AISC/AASHTO 59.81/60.90 74.49/76.12 

EC3 49.32 77.01 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

6 8 10 12 14 16 18 20 22 24

Flange Slenderness (λf)

A
IS

C
/A

A
S

H
T

O
 : 

 λ
p

  =
 9

.2
4

E
C

3
: 

 λ
r 

=
 1

1
.5

5

A
IS

C
 (S

W
):

   
λr

 =
1

6
.3

4

A
IS

C
 (C

W
):

  
λr

 =
1

8
.4

7

E
C

3
: 

  
λp

 =
 8

.2
5

A
A

S
H

T
O

 : 
  
λr

 =
1

3
.6

2

F
cr

 /
 F

y
  
  
  
  



 5 

3.  WEB BEND BUCKLING 

 
The relation between the normalized stress (Fn/Fy) and the web 

slenderness ratio λw according to different codes is shown in Fig. 2. 

The theoretical elastic buckling stresses obtained as the solution to 

the plate buckling problem assuming simply supported edges 

(kw=23.9) and partially fixed edges (kw= 36) are also shown on the 

Figure. The comparison among the three codes reveals the 

following: 

1- The limiting slenderness ratios defining compact and non- 

    compact limits vary considerably between American and  

    European codes as shown in Table 1. 

2- For slender webs, AASHTO does not consider post buckling  

    strength so that the results of applying EC3, which considers   

    post buckling, are much larger, especially at larger slenderness  

    ratios as shown in Figure 5b. 
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                          Fig. 2   Web Bend Buckling Stress 
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4.  SHEAR BUCKLING 

 
4.1 Unstiffened Webs 

 

The relation between the normalized shear strength (Vn/Vp) and the 

web slenderness ratio λw for unstiffened webs according to 

different codes is shown in Fig. 3. The theoretical elastic buckling 

strength obtained as the solution of the plate buckling problem 

assuming simply supported edges (kq=5.34) and kq= 8.25 are also 

shown on the Figure. The second kq value is based on the 

expression suggested by Lee et al. [1996] for the real edge 

condition at the web-to-flange connection. 
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Fig. 3   Shear Buckling Stress for Unstiffened Webs 
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4.2 Stiffened Webs 

 

The relation between the normalized shear strength (Vn/Vp) and the 

web slenderness ratio λw for stiffened webs, with an aspect ratio 

equal to 1, according to different codes is shown in Fig. 4. The 

theoretical elastic buckling The theoretical elastic buckling stress 

obtained as the solution to the plate buckling problem assuming 

simply supported edges (kq=9.34) and kq= 11.95 are also shown on 

the Figure. The second kq value is based on the expression 

suggested by Lee et al. [1996] for the real edge condition at the 

web-to-flange connection. 
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Fig. 4   Shear Buckling Stress for Stiffened Webs (α = 1) 
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The comparison among the three codes reveals the following: 

 

1- The limiting slenderness ratios defining compact and non-

compact sections vary considerably for compact section limits but 

nearly equal for non-compact section limits as shown in Table 1. 

2- For slender webs, both AISC and AASHTO do not consider 

postbuckling strength for unstiffened webs so that the results of 

applying EC3, which permits postbuckling, are larger as shown in 

Figure 5c. Lee et al. [2008] performed an analytical study on the 

shear strength of long web panels and concluded that the present 

provisions underestimates both the elastic shear strength and also 

the postbuckling strength. 
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Fig. 5a   Ratio of Compression Flange Elastic Buckling Stress 

to Theory 
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Fig. 5b   Ratio of Web Elastic Bend Buckling Stress to Theory 
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Fig. 5c   Ratio of Web Elastic Shear Buckling Stress to Theory 

 

5- EFFECT OF EDGE CONDITIONS 

 

All the previous approaches for calculating the effect of local plate 

buckling on both the flexural and shear strengths have the same 

simplification of treating the buckling of individual plate elements 

in the cross section separately thus ignoring the interaction between 

flange and web buckling. In addition, the supported edges of the 

plates at the web-to-flange connection are usually idealized as 

simple. This idealization does not accurately represent the real 
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strength of the cross section which can only be determined from 

physical tests. A practical alternative is to use numerical analysis 

techniques, such as finite element and finite strip methods, to arrive 

at a better approximation to the buckling strength of slender 

sections. Presently, the European code EC3: EN 1993-1-5 [2005] 

includes the possibility of using finite element analysis as a reliable 

tool in the verification of buckling limit states. 

 

Available numerical analysis softwares can easily be used to study 

cross section behavior up to failure including post buckling. These 

softwares can also handle the effect of initial imperfections, 

residual stresses, and material nonlinearities as well as geometrical 

nonlinearities. These additional factors have minor effects on the 

strength of slender sections since they fail by elastic buckling as 

shown by Maiorana et al [2009]. For this reason, the finite strip 

method software CUFSM developed by Schafer and Adany [2006] 

is used in the present paper to study the elastic buckling strength of 

slender plate girder section. The program was used to conduct a 

parametric study of the effect of actual plate edge conditions on the 

elastic buckling strength of slender plate girder sections. The 

parameters varied in the study are: 

1) Web plate height of 1000, 1500, and 2000 mm, and 

2) Flange plate width of 250, 300,400,500 mm. 

The corresponding web and flange plate thicknesses were selected 

to cover the following combinations: 

1) Slender flange with compact, non-compact, and slender web, 

2) Slender web with compact, non-compact, and slender flange. 

 

The steel used has a nominal yield stress Fy of 345 MPa and a 

modulus of elasticity E of 204000 MPa. 

 

The elastic buckling stress for the compression flange local 

buckling and web bend buckling were selected from various 

buckling modes determined by the program and then used to 

calculate the corresponding elastic buckling coefficients for flange 

buckling, kf, and for web buckling, kw.  

 

5.1 Compression Flange Local Buckling 

 
The theoretical values of the buckling coefficient kf are 0.43 for a 

simply supported edge and 1.28 for a fixed edge. The AISC value 
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ranges from 0.76 if the web is compact to 0.35 if the web is 

slender. AASHTO uses a value of 0.35 for all cases. Figure 6 

shows the results of the parametric study conducted over a wide 

range of plate girder sections of practical proportions using the 

finite strip analysis software CUFSM. The results show that the 

compression flange local buckling coefficient kf lie in the range 

1.10 to 1.20 regardless of the web slenderness. This indicates that 

the flange support at the web connection is close to being fixed. 

This result shows that the elastic buckling strength of slenderness 

flanges is underestimated by AISC and AASHTO. The results of 

EC3, being larger due to the consideration of post buckling, are 

closer to the analytical results.     
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Figure 6  Variation of Flange Buckling Coefficient kf 

 

5.2 Web Bend Buckling 

 

The theoretical values of the buckling coefficient kw are 23.9 for 

simply supported edges and 39.6 for fixed edges. AASHTO uses a 

value of 36, see White [2008], indicating that the web edges are 

close to being fixed at the flange connections. Figures 6a, 6b, and 

6c show the results of the parametric study conducted over a wide 

range of plate girder sections of practical proportions using the 

finite strip analysis software CUFSM. The results show that kw 

varies considerably between the two theoretical limits, depending 

on both the web slenderness λw (Fig. 7a) and the flange slenderness 

λf (Fig. 7b). The value of kw ranges between 33.7 and 38.3 for 
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compact flanges, between 29.2 and 37.4 for non-compact flanges, 

and between 21.6 and 32 for slender flanges. This indicates that the 

value used by AASHTO (kw = 36), is suitable only for sections 

with compact flanges (λf ≤ 12 according to AASHTO), otherwise it 

is not conservative for sections with slender and non compact 

flanges. These results are similar to those presented by Schafer and 

Seif [2008] for the local buckling of AISC rolled W-sections used 

as axially loaded columns. Based on the results of the girder range 

considered in the present study, a lower bound on the value of the 

kw can by represented by the straight line shown in Fig. 7c as: 

 

                      kw = 16 + 0.8 (λw/λf)                                                (1) 
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Fig. 7a  Variation of Buckling Coefficient kw with λw 
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Fig. 7c   Variation of Buckling Coefficient kw with (λw/λf) 

 

 

6.3 Web Shear Buckling 
 

The theoretical values of the shear buckling coefficient for 

unstiffened webs are 5.34 for simply supported edges and 8.98 for 

fixed edges. The corresponding values for a stiffened web having 

an aspect ratio of 1 are 9.34 for simple edges and 12.6 for fixed 

edges. The real boundary condition at the web-to-flange connection 

is somewhat between simple and fixed supports. Lee et al. [1996] 

suggest the following expression to better represent the real 

boundary condition:  

 

k = kss + 0.8(ksf – kss)                                 for         tf/tw ≥ 2          (2) 

  
k = kss + 0.8(ksf – kss)[1-2 {2-(tf/tw)}/3]    for 0.5≤ tf/tw ≤2          (3) 

 

The results of applying these expressions are shown in Figures 3 

and 4.  

 

 

 



 14 

6. CONCLUSION 
 

The design provisions related to local buckling of plate girder 

sections in the three international codes AISC, AASHTO, and EC3 

are compared over a wide range of slenderness ratios. The three 

codes give comparable results for compact and non-compact 

sections but differ considerably for slender sections depending on 

the consideration of postbuckling behavior in both the flexural 

strength and the shear strength limit states. The effect of actual 

plate edge conditions on the elastic buckling strength of these 

sections was evaluated through a parametric study using the finite 

strip method. The results show that the idealized edge conditions 

are always conservative for compression flange buckling and not 

always conservative for web bend buckling.  

 

 

APPENDIX: 

 

DESIGN PROVISIONS FOR LOCAL BUCKLING                         
 
This Appendix presents a summary of the local buckling strength 

provisions in the American codes AISC and AASHTO and the 

European code EC3 for the three cases of compression flange 

buckling, web bend buckling, and shear buckling. Since the two 

American codes use essentially the same approach, they are 

presented together.  

 

1- COMPRESSION FLANGE LOCAL BUCKLING  

    PROVISIONS 
 

1. 1)   AISC 2005 / AASHTO 2004: 

 

a) Slenderness Limits: 

 

AISC: The flange is compact when λ < λp = 
yFE /38.0   and 

slender when λ > λr =
yc FkE 7.0/95.0 . The buckling coefficient 

kc equals w/4  which represents a transition from a maximum 
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value of 0.76 corresponding to rolled I-shapes to a minimum value 

of 0.35 corresponding to slender webs. 

 

AASHTO: The flange is compact when λ <  λp = 
yFE /38.0  

and slender when λ >  λr =
yFE /56.0 . These limits are the same 

as used in AISC 2005 with kc taken equal to 0.35 corresponding to 

slender webs usually used in bridges. 

 

b) Strength: 
 

i) Compact Flange:  

 

AISC: The nominal moment strength Mn is equal to  Rpg  Rpc Myc, 

where the Rpg is the flange-strength reduction factor due to bend 

buckling of  slender webs. It takes a value < 1 for slender webs and 

taken equal to 1 for compact and non-compact web. The factor  Rpc 

is the web plastification factor which is equal to the section shape 

factor when the web is compact and taken equal to 1 when the web 

is slender. For non-compact webs, Rpc varies linearly between 1 

and the section shape factor. 

 

AASHTO: The nominal flexural strength Fn is equal to Rb Fyc, 

where the Rb is the flange-strength reduction factor due to bend 

buckling of slender webs which is the same as Rpg in AISC 2005. 

The additional strength due to web plastification as reflected by Rpc 

in AISC 2005 is neglected. 

 

ii) Slender Flange:  

 

AISC: The nominal moment strength Mn is based on the 

theoretical expression for elastic buckling given by: 

 Mn = 0.9 Rpg kc Sx / λ
2
. 

 

AASHTO limits the flange slenderness ratio to 12 which makes 

the flange always compact. If this limit is exceeded, the nominal 

flexural strength for both non-compact and slender flanges is given 

by:  Fn = [1.0-0.30*(λ - λp)/(λr - λp)]*Rb*Fy . 

 

iii)Non-compact Flange (AISC): The nominal moment strength is 

based on a linear transition between compact and slender flange. 
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1.2)  EUROCODE EC3:  

 

a) Slenderness Limits: The flange is compact when λ < λp = 

10 Fy/235  and slender when λ >  λr =14 Fy/235 .  

 

b) Strength: 
 

i) Compact Section: The nominal moment strength Mn is equal to 

the plastic moment  Mp  = Zx * Fy . 

 

ii) Non-compact Section: The nominal moment strength Mn is 

equal to the yield moment My = Sx * Fy . 

 

iii) Slender Section: The nominal moment strength is calculated 

from Mn= Seff * Fy where Seff is the effective elastic section 

modulus of the cross section calculated by applying a reduction 

factor ρ to slender plate components. The reduction factor ρ is 

expressed in terms of the normalized plate slenderness parameter 

λn = λf yF  /285 as:   ρ = (λn – 0.188)/ λn
2
 ≤ 1.  

 

 

2. WEB BEND BUCKLING PROVISIONS: 
 

2.1)  AISC 2005 / AASHTO 2004: 

 

a) Slenderness Limits: 

 

The web is compact in both AISC and AASHTO when λ < λp = 

yFE /76.3  and slender when λ > λr = yFE /7.5 .  

 

b) Strength: 
 

AISC: The web bend buckling is not covered in AISC 2004. It 

only affects the limit state of compression flange buckling. This is 

explained by the fact that most plate girders used in buildings have 

non-slender webs. 
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AASHTO: 

 

i)  Compact  and Non-compact Web:  

 

The nominal flexural strength Fn is equal to the yield stress Fy. 

 

ii) Slender Web: The nominal flexural strength is given by:   Fn = 

0.9 E k /λ2
 ≤Fy, where k = buckling factor for web bend buckling 

taken equal to 36. This value is based on assuming the edge 

restraint at the flange web joint to be almost fixed and is calculated 

from the expression [xx]: k = kss + 0.8*(ksf – kss), where kss= bend 

buckling coefficient for simply supported edge = 23.9, and ksf = 

bend buckling coefficient for fully restrained edge = 39.6.  

 

2.2)  EUROCODE EC3:  

 

a) Slenderness Limits: 

The web is compact when λ <  λp = 83 Fy/235  and slender when 

λ >  λr =124 Fy/235 .  

b) Strength: 
 

i) Compact Sections: The nominal moment strength Mn is equal to 

the plastic moment : Mp  = Zx * Fy . 

 

ii)  Non-compact Sections: The nominal moment strength Mn is 

equal to the yield moment My = Sx * Fy . 

 

iii) Slender Sections: The nominal moment strength is calculated 

from Mn= Seff * Fy where Seff is the effective elastic section 

modulus of the cross section calculated by applying a reduction 

factor ρ to slender plate components. The reduction factor ρ is 

expressed in terms of the normalized plate slenderness parameter 

λn = λw 
yF  /2125 as: ρ = (λn – 0.11)/ λn

2
  ≤ 1.                            

 

 3.  WEB SHEAR BUCKLING PROVISIONS: 
 

3.1)  AISC 2005 / AASHTO 2004: 

 

a) Slenderness Limits: 
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AISC: The web is compact when λ < λp =
yq FkE /10.1  and 

slender when λ > λr =
yq FkE /37.1 . The buckling coefficient kq 

equals 5 + 5 / α2
 where α = plate aspect ratio. 

 

AASHTO: The web is compact when λ < λp =
yq FkE /12.1  and 

slender when λ > λr =
yq FkE /40.1 . The buckling coefficient kq 

equals 4 + 5.34 / α2
  for α < 1 and 5.34 +4 / α2

  for α > 1, where α 

= plate aspect ratio = 5.34 for un-stiffened webs. 

 

b) Strength: 
 

i) Compact Web:  

 

AISC: The nominal shear strength Vn is equal to the plastic shear 

capacity given by Vp = 0.6 Aw Fy, where Aw = web area.  

 

AASHTO: The nominal shear strength Vn is equal to plastic shear 

capacity given by Vp = 0.58 Aw Fy.  

 

ii) Slender Web:  

 

AISC: The nominal shear strength Vn is based on the theoretical 

expression for elastic buckling given by Vn = C* Vp where C = 

buckling reduction factor = (1.51 E kq /(λ
2  

Fy)).
   

 

 

AASHTO: The nominal shear strength Vn is based on the 

theoretical expression for elastic buckling given by Vn = C* Vp 

where C = buckling reduction factor = (1.57 E kq /λ
2  

Fy).
   

 

 

iv)Non-compact Web: 

 

AISC: The nominal shear strength is equal to Vn = C* Vp where C 

= buckling reduction factor = (1.1
yq F/ k E /λ) for un-stiffened 

webs, webs with aspect ratio α > 3 , and end panels. For stiffened 

webs with α < 3, tension field action is allowed giving:  

Vn = Vp [ C + (1-C)/(1.15  )1( 2 )].  
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AASHTO: The nominal shear strength is equal to Vn = C* Vp 

where C = buckling reduction factor = (1.12
yq F/ k E /λ 

) for un-

stiffened webs, webs with aspect ratio α > 3 , and end panels. For 

stiffened webs with α < 3, tension field action is allowed giving:  

Vn = Vp [ C + 0.87*(1-C)/ )1( 2 ]. 

  

3.2)  EUROCODE EC3:  

 

a) Slenderness Limits: 

 

The flange is compact when λ < λp = 25.88 Fykq /235  and 

slender when λ >  λr =40.39 Fykq /235 , where kq = 4+ 5.34 / α2
  

for α < 1 and 5.34 +4 / α2
  for α > 1 .  

 

b) Strength: 
 

i) Compact Web: The nominal shear strength Vn is equal to plastic  

      shear capacity given by Vp = 0.58 Aw Fy, where Aw = web area.  

 

ii)   Non-compact and slender Web: The nominal shear strength      

Vn is based on the theoretical expression for elastic buckling 

given by Vn = χ * Vp where χ = buckling reduction factor =  

     0.83 / λo  , where 
 
λo = normalized slenderness parameter in  

    shear = 0.76 
cryF / , τcr = critical shear buckling stress. 
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