Publications

Export 60 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Dey, A., S. Dey, Siddhartha Bhattacharyya, V. Snasel, and A. E. Hassanien, "Simulated Annealing Based Quantum Inspired Automatic Clustering Technique", AMLTA 2018: The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018) , Cairo, 23 fEB, 2018. Abstract

Cluster analysis is a popular technique whose aim is to segregate a set of data points into groups, called clusters. Simulated Annealing (SA) is a popular meta-heuristic inspired by the annealing process used in metallurgy, useful in solving complex optimization problems. In this paper, the use of the Quantum Computing (QC) and SA is explored to design Quantum Inspired Simulated Annealing technique, which can be applied to compute optimum number of clusters for image clustering. Experimental results over a number of images endorse the effectiveness of the proposed technique pertaining to fitness value, convergence time, accuracy, robustness, and standard error. The paper also reports the computation results of a statistical superiority test, known as t-test. An experimental judgement to the classical technique has also be presented, which eventually demonstrates that the proposed technique outperforms the other.

Ahmed, K., A. E. Hassanien, E. Ezzat, and Siddhartha Bhattacharyya, "Swarming Behaviors of Chicken for Predicting Posts on Facebook Branding Pages", AMLTA 2018: The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018), Cairo, 23 fEB , 2018. Abstract

The rapid increase in social networks data and users present an urgent need for predicting the performance of posted data over these networks. It helps in many industrial aspects such as election, public opinion detection and advertising or branding over social networks. This paper presents a new posts’ prediction system for Facebook’s branding pages concerning the user’s attention and interaction. CSO is utilized to optimize the ANFIS parameters for accurate prediction. CSO-ANFIS is compared with several methods including ANFIS, particle swarm optimization, genetic algorithm and krill herd optimization.

2017
Elhoseny, M., A. Farouk, A. Shehab, and A. E. Hassanien, "Secure Image Processing and Transmission Schema in Cluster-Based Wireless Sensor Network", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

WSN as a new category of computer-based computing platforms and network structures is showing new applications in different areas such as environmental monitoring, health care and military applications. Although there are a lot of secure image processing schemas designed for image transmission over a network, the limited resources and the dynamic environment make it invisible to be used with Wireless Sensor Networks (WSNs). In addition, the current secure data transmission schemas in WSN are concentrated on the text data and are not applicable for image transmission's applications. Furthermore, secure image transmission is a big challenging issue in WSNs especially for the application that uses image as its main data such as military applications. The reason why is because the limited resources of the sensor nodes which are usually deployed in unattended environments. This chapter introduces a secure image processing and transmission schema in WSN using Elliptic Curve Cryptography (ECC) and Homomorphic Encryption (HE).

Reham Gharbia, and A. E. Hassanien, "Swarm Intelligence Based on Remote Sensing Image Fusion: Comparison between the Particle Swarm Optimization and the Flower Pollination Algorithm ", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

This chapter presents a remote sensing image fusion based on swarm intelligence. Image fusion is combining multi-sensor images in a single image that has most informative. Remote sensing image fusion is an effective way to extract a large volume of data from multisource images. However, traditional image fusion approaches cannot meet the requirements of applications because they can lose spatial information or distort spectral characteristics. The core of the image fusion is image fusion rules. The main challenge is getting suitable weight of fusion rule. This chapter proposes swarm intelligence to optimize the image fusion rule. Swarm intelligence algorithms are a family of global optimizers inspired by swarm phenomena in nature and have shown better performance. In this chapter, two remote sensing image fusion based on swarm intelligence algorithms, Particle Swarm Optimization (PSO) and flower pollination algorithm are presented to get an adaptive image fusion rule and comparative between them.

2016
Hafez;, A. I., H. M. Zawbaa;, E. Emary;, and A. E. Hassanien, "Sine cosine optimization algorithm for feature selection ", 016 International Symposium on INnovations in Intelligent SysTems and Applications , Romania, 2-5 Aug., 2016. Abstract

Nowadays, a dataset includes a huge number of features with irrelevant and redundant ones. Feature selection is required for a better machine-learning algorithms' performance. A system for feature selection is proposed in this work using a sine cosine algorithm (SCA). SCA is a new stochastic search algorithm for optimization problems. SCA optimization adaptively balances the exploration and exploitation to find the optimal solution quickly. The SCA can quickly explore the feature space for optimal or near-optimal feature subset minimizing a given fitness function. The proposed fitness function used incorporates both classification accuracy and feature size reduction. The proposed system was tested on 18 datasets and shows an advance over other search methods as particle swarm optimization (PSO) and genetic algorithm (GA) optimizers commonly used in this context using different evaluation indicators.

Mohamed Tahoun, Abd El Rahman Shabayek, H. Nassar, M. M. Giovenco, R. Reulke, Eid Emary, and A. E. Hassanien, "Satellite Image Matching and Registration: A Comparative Study Using Invariant Local Features", Image Feature Detectors and Descriptors: Springer International Publishing, pp. 135–171, 2016. Abstract
n/a
Kotyk, T., S. Chakraborty, N. Dey, T. Gaber, A. E. Hassanien, and V. Snasel, "Semi-automated System for Cup to Disc Measurement for Diagnosing Glaucoma Using Classification Paradigm", Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015: Springer International Publishing, pp. 653–663, 2016. Abstract
n/a
Mahmoud, R., N. El-Bendary, H. M. O. Mokhtar, and A. E. Hassanien, "Similarity Measures Based Recommender System for Rehabilitation of People with Disabilities", The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt: Springer International Publishing, pp. 523–533, 2016. Abstract
n/a
Ali, A. F., and A. - E. Hassanien, "A Simplex Nelder Mead Genetic Algorithm for Minimizing Molecular Potential Energy Function", Applications of Intelligent Optimization in Biology and Medicine: Springer International Publishing, pp. 1–21, 2016. Abstract
n/a
Hafez, A. I., H. M. Zawbaa, E. Emary, and A. E. Hassanien, "Sine cosine optimization algorithm for feature selection", INnovations in Intelligent SysTems and Applications (INISTA), 2016 International Symposium on: IEEE, pp. 1–5, 2016. Abstract
n/a
Abdelhameed Ibrahim, T. Horiuchi, S. Tominaga, and A. E. Hassanien, "Spectral Reflectance Images and Applications", Image Feature Detectors and Descriptors: Springer International Publishing, pp. 227–254, 2016. Abstract
n/a
Ali, A. F., and A. - E. Hassanien, "A Survey of Metaheuristics Methods for Bioinformatics Applications", Applications of Intelligent Optimization in Biology and Medicine: Springer International Publishing, pp. 23–46, 2016. Abstract
n/a
Hassanien, A. E., and Eid Emary, Swarm intelligence: principles, advances, and applications, : CRC Press, 2016. Abstract
n/a
2015
Mahmoud, R., N. El-Bendary, H. M. O. Mokhtar, and A. E. Hassanien, "Similarity Measures based Recommender System for Rehabilitation of People with Disabilities", the 1st International Conference on Advanced Intelligent Systems and Informatics (AISI’15) Springer, Beni Suef University, Beni Suef, Eg, Nov. 28-30, 2015. Abstract

This paper proposes a recommender system to predict and suggest a
set of rehabilitation methods for patients with spinal cord injuries (SCI). The proposed
system automates, stores and monitors the heath conditions of SCI patients.
The International Classification of Functioning, Disability and Health classification
(ICF) is used to stores and monitors the progress in health status. A set of
similarity measures are utilized in order to get the similarity between patients and
predict the rehabilitation recommendations. Experimental results showed that the
proposed recommender system has obtained an accuracy of 98% via implementing
the cosine similarity measure.

Abraham, A., K. Wegrzyn-Wolska, A. E. Hassanien, V. Snasel, and A. M. Alimi, Second International Afro-European Conference for Industrial Advancement AECIA 2015, , 2015. Abstract

This volume contains accepted papers presented at AECIA2014, the First International Afro-European Conference for Industrial Advancement. The aim of AECIA was to bring together the foremost experts as well as excellent young researchers from Africa, Europe, and the rest of the world to disseminate latest results from various fields of engineering, information, and communication technologies. The first edition of AECIA was organized jointly by Addis Ababa Institute of Technology, Addis Ababa University, and VSB - Technical University of Ostrava, Czech Republic and took place in Ethiopia's capital, Addis Ababa.

Hassanien, A. E., and E. Alamry, Swarm Intelligence: Principles, Advances, and Applications, , New yourk, CRC – Taylor & Francis Group, 2015. AbstractWebsite

warm Intelligence: Principles, Advances, and Applications delivers in-depth coverage of bat, artificial fish swarm, firefly, cuckoo search, flower pollination, artificial bee colony, wolf search, and gray wolf optimization algorithms. The book begins with a brief introduction to mathematical optimization, addressing basic concepts related to swarm intelligence, such as randomness, random walks, and chaos theory. The text then: Describes the various swarm intelligence optimization methods, standardizing the variants, hybridizations, and algorithms whenever possible
Discusses variants that focus more on binary, discrete, constrained, adaptive, and chaotic versions of the swarm optimizers, Depicts real-world applications of the individual optimizers, emphasizing variable selection and fitness function design, Details the similarities, differences, weaknesses, and strengths of each swarm optimization method and Draws parallels between the operators and searching manners of the different algorithms

Alaa Tharwat, T. Gaber, A. E. Hassanien, M. K. Shahin, and B. Refaat, "Sift-based arabic sign language recognition system", Afro-european conference for industrial advancement: Springer International Publishing, pp. 359–370, 2015. Abstract
n/a
Ali, M. A. S., M. I. Shaalan, A. E. Hassanien, and T. - H. Kim, "A Simple Approach for Segmentation and Removal of Interphase Cells from Chromosome Images", Computer and Computing Science (COMCOMS), 2015 3rd International Conference on: IEEE, pp. 3–8, 2015. Abstract
n/a
Moustafa Zein, A. Adl, A. E. Hassanien, A. Badr, and T. - H. Kim, "A Social Relationship Modifiers Modeller", Computer, Information and Application (CIA), 2015 3rd International Conference on: IEEE, pp. 33–37, 2015. Abstract
n/a
2014
Alaa Tharwat, T. Gaber, M. K. Shahin, B. Refaat, and A. E. H. Ali, "SIFT-based Arabic Sign Language Recognition System", The 1st Afro-European Conference for Industrial Advancement, , Addis Ababa, Ethiopia, November 17-19, , 2014.
H. Hannah Inbarani, S. Senthil Kumar, A. E. Hassanien, and A. T. Azar, "Soft Rough Sets for Heart Valve Disease Diagnosis ", The 2nd International Conference on Advanced Machine Learning Technologies and Applications , Egypt, November 17-19, , 2014.
Liang Chen, S. Feng, W. Zhang, A. E. Hassanien, and H. Liu, "Sparse ICA based on Infinite Norm for fMRI Analysis ", The 2nd International Conference on Advanced Machine Learning Technologies and Applications , Egypt, November 17-19, , 2014.
Ghany, K. K. A., A. E. Hassanien, and G. Schaefer, "Similarity measures for fingerprint matching", Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV): The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), pp. 1, 2014. Abstract
n/a
Inbarani, H. H., S. S. Kumar, A. T. Azar, and A. E. Hassanien, "Soft rough sets for heart valve disease diagnosis", International Conference on Advanced Machine Learning Technologies and Applications: Springer International Publishing, pp. 347–356, 2014. Abstract
n/a
Liang Chen, S. Feng, W. Zhang, A. E. Hassanien, and H. Liu, "Sparse ICA Based on Infinite Norm for fMRI Analysis", International Conference on Advanced Machine Learning Technologies and Applications: Springer International Publishing, pp. 379–388, 2014. Abstract
n/a
Tourism