Publications

Export 33 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M [N] O P Q R S T U V W X Y Z   [Show ALL]
A
Ahmed M. Anter, A. E. Hassenian, M. A. Elsoud, and M. F.Tolba, "Neutrosophic sets and fuzzy C-means clustering for improving CT liver image segmentation", The 5th International Conference on Innovations in Bio-Inspired Computing and Applications (Springer) IBICA2014, Ostrava, Czech Republic., 22-24 June, 2014.
Ali, A. F., A. E. Hassanien, Václav Snášel, and M. F. Tolba, "A New Hybrid Particle Swarm Optimization with Variable Neighborhood Search for Solving Unconstrained Global Optimization Problems", Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing and Applications IBICA 2014: Springer International Publishing, pp. 151–160, 2014. Abstract
n/a
Ali, A. F., A. E. Hassanien, and Václav Snášel, "The Nelder-Mead Simplex Method with Variables Partitioning for Solving Large Scale Optimization Problems.", Innovations in Bio-inspired Computing and Applications. Advances in Intelligent Systems and Computing(Springer) , Czech republic , Volume 237, pp. 271-284, 2013.
Ali, A. F., A. Mostafa, G. I. Sayed, M. A. Fattah, and A. E. Hassanien, "Nature Inspired Optimization Algorithms for CT Liver Segmentation", Medical Imaging in Clinical Applications: Springer International Publishing, pp. 431–460, 2016. Abstract
n/a
Ali, A. F., A. E. Hassanien, and Václav Snášel, "The nelder-mead simplex method with variables partitioning for solving large scale optimization problems", Innovations in Bio-inspired Computing and Applications: Springer International Publishing, pp. 271–284, 2014. Abstract
n/a
Ali, A. F., A. E. Hassanien, V. Snasel, and M. F.Tolba, "A new hybrid particle swarm optimization with variable neighborhood search for solving unconstrained global optimization problems", The 5th International Conference on Innovations in Bio-Inspired Computing and Applications (Springer) IBICA2014, Ostrava, Czech Republic., 22-24 June, 2014.
Anter, A. M., A. E. Hassanien, M. A. A. ELsoud, and M. F. Tolba, "Neutrosophic sets and fuzzy c-means clustering for improving ct liver image segmentation", Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing and Applications IBICA 2014: Springer International Publishing, pp. 193–203, 2014. Abstract
n/a
Asad, A. H., A. T. Azar, and A. E. Hassanien, "A New Heuristic Function of Ant Colony System for Retinal Vessel Segmentation", International Journal of Rough Sets and Data Analysis, vol. 1, issue 2, pp. 14-31, 2014.
Asad, A. H., Eid Elamry, A. E. Hassanien, and M. F. Tolba, "New global update mechanism of ant colony system for retinal vessel segmentation", Hybrid Intelligent Systems (HIS), 2013 13th International Conference on: IEEE, pp. 221–227, 2013. Abstract
n/a
Asad, A. H., Eid Elamry, A. E. Hassanien, and M. Tolba, "New Global Update Mechanism of Ant Colony System for Retinal Vessel Segmentation,", 13th IEEE International Conference on Hybrid Intelligent Systems |(HIS13) Tunisia, 4-6 Dec. pp. 222-228, 2013, Tunisia, , 4-6 Dec, 2013.
Asad, A. H., A. T. Azar, and A. E. Hassanien, "A new heuristic function of ant colony system for retinal vessel segmentation", Medical Imaging: Concepts, Methodologies, Tools, and Applications: IGI Global, pp. 2063–2081, 2017. Abstract
n/a
Aziz, A. S. A., A. T. Azar, A. E. Hassanien, and S. E. - O. Hanafy, "Negative Selection Approach Application in Network Intrusion Detection Systems", arXiv preprint arXiv:1403.2716, 2014. Abstract
n/a
B
Babers, R., and A. E. Hassanien, "A Nature-Inspired Metaheuristic Cuckoo Search Algorithm for Community Detection in Social Networks", International Journal of Service Science, Management, Engineering, and Technology (IJSSMET), vol. 8, no. 1: IGI Global, pp. 50–62, 2017. Abstract
n/a
Babers, R., A. E. Hassanien, and N. I. Ghali, "A nature-inspired metaheuristic Lion Optimization Algorithm for community detection", Computer Engineering Conference (ICENCO), 2015 11th International: IEEE, pp. 217–222, 2015. Abstract
n/a
D
Darwish, A., M. M. El-Gendy, and A. E. Hassanien, "A New Hybrid Cryptosystem for Internet of Things Applications", Multimedia Forensics and Security: Springer International Publishing, pp. 365–380, 2017. Abstract
n/a
E
Emary, E., Waleed Yamany, and A. E. Hassanien, "New approach for feature selection based on rough set and bat algorithm", Computer Engineering & Systems (ICCES), 2014 9th International Conference on: IEEE, pp. 346–353, 2014. Abstract
n/a
G
Gaber, T., N. Zhang, and A. E. Hassanien, "A novel approach to allow multiple resales of DRM-protected contents", Computer Engineering & Systems (ICCES), 2013 8th International Conference on: IEEE, pp. 86–91, 2013. Abstract
n/a
H
Hafez, A. I., Hossam M. Zawbaa, A. E. Hassanien, and A. A. Fahmy, "Networks community detection using artificial bee colony swarm optimization", The 5th International Conference on Innovations in Bio-Inspired Computing and Applications (Springer) IBICA2014, Ostrava, Czech Republic., 22-24 June, 2014. Abstractibica2014_p29.pdfibica2014_p27.pdf

Community structure identification in complex networks has been an
important research topic in recent years. Community detection can be viewed as
an optimization problem in which an objective quality function that captures the
intuition of a community as a group of nodes with better internal connectivity
than external connectivity is chosen to be optimized. In this work Artificial bee
colony (ABC) optimization has been used as an effective optimization technique
to solve the community detection problem with the advantage that the number of
communities is automatically determined in the process. However, the algorithm
performance is influenced directly by the quality function used in the optimization
process. A comparison is conducted between different popular communities’
quality measures when used as an objective function within ABC. Experiments
on real life networks show the capability of the ABC to successfully find an optimized
community structure based on the quality function used.

Hafez, A. I., H. M. Zawbaa, A. E. Hassanien, and A. A. Fahmy, "Networks community detection using artificial bee colony swarm optimization", Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing and Applications IBICA 2014: Springer International Publishing, pp. 229–239, 2014. Abstract
n/a
Hassanien, A. E., M. A. Fattah, K. M. AMIN, and S. MOHAMED, "A Novel Hybrid Binarization Technique for Images of Historical Arabic Manuscripts", Studies in Informatics and Control, , vol. 24, issue 3, pp. 271-282, 2015. AbstractWebsite

In this paper, a novel binarization approach based on neutrosophic sets and sauvola’s approach is presented.
This approach is used for historical Arabic manuscript images which have problems with types of noise. The input RGB image is changed into the NS domain, which is shown using three subsets, namely, the percentage of indeterminacy in a subset, the percentage of falsity in a subset and the percentage of truth in a subset. The entropy in NS is used for evaluating the indeterminacy with the most important operation ”λ mean” operation in order to minimize indeterminacy which can be used to reduce noise. Finally, the manuscript is binarized using an adaptive thresholding technique. The main advantage of the proposed approach is that it preserves weak connections and provides smooth and continuous strokes. The performance of the proposed approach is evaluated both objectively and subjectively against standard databases and manually collected data base. The proposed method gives high results compared with other famous binarization approaches

Hassanien, A. E., M. A. Fattah, K. M. AMIN, and S. MOHAMED, "A novel hybrid binarization technique for images of historical Arabic manuscripts", Studies in Informatics and Control, vol. 24, no. 3, pp. 271–282, 2015. Abstract
n/a
I
Ismael, G., A. E. Hassanien, and A. Darwish, "new chaotic whale optimization algorithm for features selection", Journal of Classification (In review), vol. Springer, 2017.
Ismail, F. H., A. F. Ali, S. Esmat, and A. E. Hassanien, "Newcastle Disease Virus Clustering Based on Swarm Rapid Centroid Estimation", Advances in Nature and Biologically Inspired Computing: Springer International Publishing, pp. 359–367, 2016. Abstract
n/a
K
Kudelka, M., V. Snasel, Z. Horak, A. E. Hassanien, A. Abraham, and J. D. Velásquez, "A novel approach for comparing web sites by using MicroGenres", Engineering Applications of Artificial Intelligence, vol. 35: Pergamon, pp. 187–198, 2014. Abstract
n/a
Kudelka, M., V. Snasel, Z. Horak, A. E. Hassanien, A. Abraham, and J. D. Velásquez, "A novel approach for comparing web sites by using MicroGenres", Engineering Applications of Artificial Intelligence,, vol. 35, pp. 178-198, 2014. AbstractWebsite

In this paper, a novel approach is introduced to compare web sites by analysing their web page content. Each web page can be expressed as a set of entities called MicroGenres, which in turn are abstractions about design patterns and genres for representing the page content. This description is useful for web page and web site classification and for a deeper insight into the web site׳s social context.

The web site comparison is useful for extracting patterns which can be used for improving Web search engine effectiveness, the identification of best practices in web site design and of course in the organization of web page content to personalize the web user experience on a web site.

The effectiveness of the proposed approach was tested in a real world case, with e-shop web sites showing that a web site can be represented in a high level of abstraction by using MicroGenres, the contents of which can then be compared and given a measure corresponding to web site similarity. This measure is very useful for detecting web communities on the Web, i.e., a group of web sites sharing similar contents, and the result is essential in performing a focused and effective information search as well as minimizing web page retrieval.

Tourism