Publications

Export 86 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E [F] G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
F
Karam, H., A. Hassanien, and M. Nakajima, "Feature-based image metamorphosis optimization algorithm", Virtual Systems and Multimedia, 2001. Proceedings. Seventh International Conference on: IEEE, pp. 555–564, 2001. Abstract
n/a
Hassanien, A. - E., and M. Nakajima, "Feature-specification algorithm based on snake model for facial image morphing", IEICE transactions on information and systems, vol. 82, no. 2: The Institute of Electronics, Information and Communication Engineers, pp. 439–446, 1999. Abstract
n/a
Emary, 31. E., K. K. A. Ghany, H. M. Zawbaa, A. E. Hassanien, and B. Pârv, "Firefly Optimization Algorithm for Feature Selection", Proceedings of the 7th Balkan Conference on Informatics Conference (BCI '15 ), 2015. Abstract

In this paper, a system for feature selection based on firefly algorithm (FFA) optimization is proposed. Data sets ordinarily includes a huge number of attributes, with irrelevant and redundant attributes. Redundant and irrelevant attributes might reduce the classification accuracy because of the large search space. The main goal of attribute reduction is to choose a subset of relevant attributes from a huge number of available attributes to obtain comparable or even better classification accuracy from using all attributes. A system for feature selection is proposed in this paper using a modified version of the firefly algorithm (FFA) optimization. The modified FFA algorithm adaptively balance the exploration and exploitation to quickly find the optimal solution. FFA is a new evolutionary computation technique, inspired by the flash lighting process of fireflies. The FFA can quickly search the feature space for optimal or near-optimal feature subset minimizing a given fitness function. The proposed fitness function used incorporate both classification accuracy and feature reduction size. The proposed system was tested on eighteen data sets and proves advance over other search methods as particle swarm optimization (PSO) and genetic algorithm (GA) optimizers commonly used in this context using different evaluation indicators

Eid Emary, H. M. Zawbaa, K. K. A. Ghany, A. E. Hassanien, and B. Parv, "Firefly optimization algorithm for feature selection", Proceedings of the 7th Balkan Conference on Informatics Conference: ACM, pp. 26, 2015. Abstract
n/a
Fouad, M. M., H. M. Zawbaa, T. Gaber, V. Snasel, and A. E. Hassanien, "A Fish Detection Approach Based on BAT Algorithm", the 1st International Conference on Advanced Intelligent Systems and Informatics (AISI’15) Springer, Beni Suef University, Beni Suef, Eg, Nov. 28-30, 2015. Abstract

Fish detection and identi cation are important steps towards
monitoring sh behavior. The importance of such monitoring step comes
from the need for better understanding of the sh ecology and issuing
conservative actions for keeping the safety of this vital food resource.
The recent advances in machine learning approaches allow many appli-
cations to easily analyze and detect a number of sh species. The main
competence between these approaches is based on two main detection
parameters: the time and the accuracy measurements. Therefore, this
paper proposes a sh detection approach based on BAT optimization
algorithm (BA). This approach aims to reduce the classi cation time
within the sh detection process. The performance of this system was
evaluated by a number of well-known machine learning classi ers, KNN,
ANN, and SVM. The approach was tested with 151 images to detect the
Nile Tilapia sh species and the results showed that k-NN can achieve
high accuracy 90%, with feature reduction ratio

Fouad, M. M., H. M. Zawbaa, T. Gaber, V. Snasel, and A. E. Hassanien, "A Fish Detection Approach Based on BAT Algorithm", The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt: Springer International Publishing, pp. 273–283, 2016. Abstract
n/a
Abdelhameed Ibrahim, ali ahmed, S. Hussein, and A. E. Hassanien, "Fish Image Segmentation Using Salp Swarm Algorithm", Download book PDF EPUB International Conference on Advanced Machine Learning Technologies and Applications, Cairo, 23 Feb, 2018. Abstract

Fish image segmentation can be considered an essential process in developing a system for fish recognition. This task is challenging as different specimens, rotations, positions, illuminations, and backgrounds exist in fish images. In this research, a segmentation model is proposed for fish images using Salp Swarm Algorithm (SSA). The segmentation is formulated using Simple Linear Iterative Clustering (SLIC) method with initial parameters optimized by the SSA. The SLIC method is used to cluster image pixels to generate compact and nearly uniform superpixels. Finally, a thresholding using Otsu’s method helped to produce satisfactory results of extracted fishes from the original images under different conditions. A fish dataset consisting of real-world images was tested. In experiments, the proposed model shows robustness for different cases compared to conventional work.

Radhwan, A., M. Kamel, M. Y. Dahab, and A. E. Hassanien, "Forecasting Exchange Rates: A Chaos-Based Regression Approach", International Journal of Rough Sets and Data Analysis (IJRSDA), vol. 2, no. 1: IGI Global, pp. 38–57, 2015. Abstract
n/a
Radhwan, A., M. Kamel, M. Y. Dahab, and A. E. Hassanien, "Forecasting Exchange Rates: A Chaos-Based Regression Approach. Intelligent Approach.", International Journal of Rough Sets and Data Analysis (IJRSDA) , vol. 2, issue 1, 2015. AbstractWebsite

Accurate forecasting for future events constitutes a fascinating challenge for theoretical and for applied researches. Foreign Exchange market (FOREX) is selected in this research to represent an example of financial systems with a complex behavior. Forecasting a financial time series can be a very hard task due to the inherent uncertainty nature of these systems. It seems very difficult to tell whether a series is stochastic or deterministic chaotic or some combination of these states. More generally, the extent to which a non-linear deterministic process retains its properties when corrupted by noise is also unclear. The noise can affect a system in different ways even though the equations of the system remain deterministic. Since a single reliable statistical test for chaoticity is not available, combining multiple tests is a crucial aspect, especially when one is dealing with limited and noisy data sets like in economic and financial time series. In this research, the authors propose an improved model for forecasting exchange rates based on chaos theory that involves phase space reconstruction from the observed time series and the use of support vector regression (SVR) for forecasting.Given the exchange rates of a currency pair as scalar observations, observed time series is first analyzed to verify the existence of underlying nonlinear dynamics governing its evolution over time. Then, the time series is embedded into a higher dimensional phase space using embedding parameters.In the selection process to find the optimal embedding parameters,a novel method based on the Differential Evolution (DE) geneticalgorithm(as a global optimization technique) was applied. The authors have compared forecasting accuracy of the proposed model against the ordinary use of support vector regression. The experimental results demonstrate that the proposed method, which is based on chaos theory and genetic algorithm,is comparable with the existing approaches.

Salama, M. A., A. E. Hassanien, and A. M. Alimi, "Formal concept analysis approach for comparison between Mutagenicity and Carcinogenicity in Cheminformatics", Hybrid Intelligent Systems (HIS), 2013 13th International Conference on: IEEE, pp. 267–272, 2013. Abstract
n/a
Salama, M., A. E. Hassanien, and Adel Alimi, "Formal concept analysis approach for comparison between mutagenicity and carcinogenicity in Cheminformatics. ", 13th IEEE International Conference on Hybrid Intelligent Systems |(HIS13) Tunisia, 4-6 Dec. pp. 268-273, 2013, Tunisia, , 4-6 Dec, 2013.
Amin, I. I., S. K. Kassim, A. E. Hassanien, and H. Hefny, "Formal concept analysis for mining hypermethylated genes in breast cancer tumor subtypes", 12th International Conference on Intelligent Systems Design and Applications (ISDA), , Kochi, India, pp. 764 - 769, 2012. Abstract

The main purpose of this paper is to show the use of formal concept analysis (FCA) as data mining approach for mining the common hypermethylated genes between breast cancer subtypes, by extracting formal concepts which representing sets of significant hypermethylated genes for each breast cancer subtypes, then the formal context is built which leading to construct a concept lattice which is composed of formal concepts. This lattice can be used as knowledge discovery and knowledge representation therefore, becoming more interesting for the biologists.

Amin, I. I., S. K. Kassim, A. E. Hassanien, and H. A. Hefny, "Formal concept analysis for mining hypermethylated genes in breast cancer tumor subtypes", Intelligent Systems Design and Applications (ISDA), 2012 12th International Conference on: IEEE, pp. 764–769, 2012. Abstract
n/a
Amin, I. I., S. K. Kassim, A. E. Hassanien, and H. A. Hefny, "Formal concept analysis for mining hypermethylated genes in breast cancer tumor subtypes", Intelligent Systems Design and Applications (ISDA), 2012 12th International Conference on: IEEE, pp. 764–769, 2012. Abstract
n/a
Aboul-Ella Hassanien, Ajith Abraham, A. V. W. P., Foundations of Computational Intelligence Volume 1: Learning and Approximation, , Germany , Studies in Computational Intelligence, Springer Verlag, Vol. 201 , 2009. AbstractWebsite

Learning methods and approximation algorithms are fundamental tools that deal with computationally hard problems and problems in which the input is gradually disclosed over time. Both kinds of problems have a large number of applications arising from a variety of fields, such as algorithmic game theory, approximation classes, coloring and partitioning, competitive analysis, computational finance, cuts and connectivity, geometric problems, inapproximability results, mechanism design, network design, packing and covering, paradigms for design and analysis of approximation and online algorithms, randomization techniques, real-world applications, scheduling problems and so on. The past years have witnessed a large number of interesting applications using various techniques of Computational Intelligence such as rough sets, connectionist learning; fuzzy logic; evolutionary computing; artificial immune systems; swarm intelligence; reinforcement learning, intelligent multimedia processing etc.. In spite of numerous successful applications of Computational Intelligence in business and industry, it is sometimes difficult to explain the performance of these techniques and algorithms from a theoretical perspective. Therefore, we encouraged authors to present original ideas dealing with the incorporation of different mechanisms of Computational Intelligent dealing with Learning and Approximation algorithms and underlying processes.

Aboul-Ella Hassanien, Ajith Abraham, F. H., Foundations of Computational Intelligence Volume 2: Approximate Reasoning, , Germany, Studies in Computational Intelligence, Springer Verlag, Vol. 202 , 2009. AbstractWebsite

Human reasoning usually is very approximate and involves various types of uncertainties. Approximate reasoning is the computational modelling of any part of the process used by humans to reason about natural phenomena or to solve real world problems. The scope of this book includes fuzzy sets, Dempster-Shafer theory, multi-valued logic, probability, random sets, and rough set, near set and hybrid intelligent systems. Besides research articles and expository papers on theory and algorithms of approximation reasoning, papers on numerical experiments and real world applications were also encouraged. This Volume comprises of 12 chapters including an overview chapter providing an up-to-date and state-of-the research on the applications of Computational Intelligence techniques for approximation reasoning. The Volume is divided into 2 parts: Part-I: Approximate Reasoning – Theoretical Foundations and Part-II: Approximate Reasoning – Success Stories and Real World Applications

Kacprzyk, J., A. Abraham, A. - E. Hassanien, and F. Herrera, Foundations of Computational Intelligence Volume 2: Approximate Reasoning, : Springer Berlin Heidelberg, 2009. Abstract
n/a
Ajith Abraham, Aboul-Ella Hassanien, P. S. A. E., Foundations of Computational Intelligence Volume 3: Global Optimization, , Germany, Studies in Computational Intelligence, Springer Verlag, Vol. 203 , 2009. AbstractWebsite

Global optimization is a branch of applied mathematics and numerical analysis that deals with the task of finding the absolutely best set of admissible conditions to satisfy certain criteria / objective function(s), formulated in mathematical terms. Global optimization includes nonlinear, stochastic and combinatorial programming, multiobjective programming, control, games, geometry, approximation, algorithms for parallel architectures and so on. Due to its wide usage and applications, it has gained the attention of researchers and practitioners from a plethora of scientific domains. Typical practical examples of global optimization applications include: Traveling salesman problem and electrical circuit design (minimize the path length); safety engineering (building and mechanical structures); mathematical problems (Kepler conjecture); Protein structure prediction (minimize the energy function) etc.

Abraham, A., A. - E. Hassanien, P. Siarry, and A. Engelbrecht, Foundations of Computational Intelligence Volume 3: Global Optimization, : Springer, 2009. Abstract
n/a
Abraham, A., A. - E. Hassanien, P. Siarry, and A. Engelbrecht, Foundations of Computational Intelligence Volume 3: Global Optimization, : Springer, 2009. Abstract
n/a
Abraham, A., A. - E. Hassanien, P. Siarry, and A. Engelbrecht, Foundations of Computational Intelligence Volume 3: Global Optimization, : Springer, 2009. Abstract
n/a
Ajith Abraham, Aboul-Ella Hassanien, A. C., Foundations of Computational Intelligence Volume 4: Bio-Inspired Data Mining, , Germany, Studies in Computational Intelligence, Springer Verlag, 2009. AbstractWebsite

Computational tools or solutions based on intelligent systems are being used with great success in Data Mining applications. Nature has been very successful in providing clever and efficient solutions to different sorts of challenges and problems posed to organisms by ever-changing and unpredictable environments. It is easy to observe that strong scientific advances have been made when issues from different research areas are integrated. A particularly fertile integration combines biology and computing. Computational tools inspired on biological process can be found in a large number of applications. One of these applications is Data Mining, where computing techniques inspired on nervous systems; swarms, genetics, natural selection, immune systems and molecular biology have provided new efficient alternatives to obtain new, valid, meaningful and useful patterns in large datasets.

Kacprzyk, J., A. Abraham, A. P. L. F. de Carvalho, and A. - E. Hassanien, Foundations of Computational Intelligence Volume 4: Bio-Inspired Data Mining, : Springer Berlin Heidelberg, 2009. Abstract
n/a
Aboul-Ella Hassanien, Ajith Abraham, V. S., Foundations of Computational Intelligence Volume 5: Function Approximation and Classification, , Germany, Studies in Computational Intelligence, Springer Verlag, Vol. 205 , 2009. AbstractWebsite

Approximation theory is that area of analysis which is concerned with the ability to approximate functions by simpler and more easily calculated functions. It is an area which, like many other fields of analysis, has its primary roots in the mathematics.The need for function approximation and classification arises in many branches of applied mathematics, computer science and data mining in particular.

Abraham, A., A. - E. Hassanien, V. Sná, and others, Foundations of Computational Intelligence Volume 5: Function Approximation and Classification, : Springer Science & Business Media, 2009. Abstract
n/a
Tourism