Export 106 results:
Sort by: Author Title Type [ Year  (Asc)]
Abdelhameed Ibrahim, T. Horiuchi, S. Tominaga, and A. E. Hassanien, "Color Invariant Representation and Applications", Handbook of Research on Machine Learning Innovations and Trends: IGI Global, pp. 1041–1061, 2017. Abstract
Chakraborty, S., S. Chatterjee, N. Dey, A. S. Ashour, and A. E. Hassanien, "Comparative Approach Between Singular Value Decomposition and Randomized Singular Value Decomposition-based Watermarking", Intelligent Techniques in Signal Processing for Multimedia Security: Springer International Publishing, pp. 133–149, 2017. Abstract
Alaa Tharwat, Yasmine S. Moemen, and A. E. Hassanien, "Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines", Journal of Biomedical Informatics, vol. 68, pp. 132-149 , 2017. AbstractWebsite

Measuring toxicity is an important step in drug development. Nevertheless, the current experimental methods used to estimate the drug toxicity are expensive and time-consuming, indicating that they are not suitable for large-scale evaluation of drug toxicity in the early stage of drug development. Hence, there is a high demand to develop computational models that can predict the drug toxicity risks. In this study, we used a dataset that consists of 553 drugs that biotransformed in liver. The toxic effects were calculated for the current data, namely, mutagenic, tumorigenic, irritant and reproductive effect. Each drug is represented by 31 chemical descriptors (features). The proposed model consists of three phases. In the first phase, the most discriminative subset of features is selected using rough set-based methods to reduce the classification time while improving the classification performance. In the second phase, different sampling methods such as Random Under-Sampling, Random Over-Sampling and Synthetic Minority Oversampling Technique (SMOTE), BorderLine SMOTE and Safe Level SMOTE are used to solve the problem of imbalanced dataset. In the third phase, the Support Vector Machines (SVM) classifier is used to classify an unknown drug into toxic or non-toxic. SVM parameters such as the penalty parameter and kernel parameter have a great impact on the classification accuracy of the model. In this paper, Whale Optimization Algorithm (WOA) has been proposed to optimize the parameters of SVM, so that the classification error can be reduced. The experimental results proved that the proposed model achieved high sensitivity to all toxic effects. Overall, the high sensitivity of the WOA + SVM model indicates that it could be used for the prediction of drug toxicity in the early stage of drug development.

Alaa Tharwat, and A. E. Hassanien, "Chaotic antlion algorithm for parameter optimization of support vector machine", Applied Intelligence, vol. 48, issue 3, pp. 670–686, 2018. AbstractWebsite

Support Vector Machine (SVM) is one of the well-known classifiers. SVM parameters such as kernel parameters and penalty parameter (C) significantly influence the classification accuracy. In this paper, a novel Chaotic Antlion Optimization (CALO) algorithm has been proposed to optimize the parameters of SVM classifier, so that the classification error can be reduced. To evaluate the proposed algorithm (CALO-SVM), the experiment adopted six standard datasets which are obtained from UCI machine learning data repository. For verification, the results of the CALO-SVM algorithm are compared with grid search, which is a conventional method of searching parameter values, standard Ant Lion Optimization (ALO) SVM, and three well-known optimization algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Social Emotional Optimization Algorithm (SEOA). The experimental results proved that the proposed algorithm is capable of finding the optimal values of the SVM parameters and avoids the local optima problem. The results also demonstrated lower classification error rates compared with GA, PSO, and SEOA algorithms.

Rizk Masoud, A. E. Hassanien, and Siddhartha Bhattacharyya, "Chaotic Crow Search Algorithm for Fractional Optimization Problems", Applied soft computing , 2018. Abstract

This paper presents a chaotic crow search algorithm (CCSA) for solving fractional optimization problems (FOPs). To refine the global convergence speed and enhance the exploration/exploitation tendencies, the proposed CCSA integrates chaos theory (CT) into the CSA. CT is introduced to tune the parameters of the standard CSA, yielding four variants, with the best chaotic variant being investigated. The performance of the proposed CCSA is validated on twenty well-known fractional benchmark problems. Moreover, it is validated on a fractional economic environmental power dispatch problem by attempting to minimize the ratio of total emissions to total fuel cost. Finally, the proposed CCSA is compared with the standard CSA, particle swarm optimization (PSO), firefly algorithm (FFA), dragonfly algorithm (DA) and grey wolf algorithm (GWA). Additionally, the efficiency of the proposed CCSA is justified using the non parametric Wilcoxon signed-rank test. The experimental results prove that the proposed CCSA outperforms other algorithms in terms of quality and reliability.

Ahmed M. Anter, and A. E. Hassenian, "Computational intelligence optimization approach based on particle swarm optimizer and neutrosophic set for abdominal CT liver tumor segmentation", Journal of Computational Science, 2018. Abstract

In this paper, an improved segmentation approach for abdominal CT liver tumor based on neutrosophic sets (NS), particle swarm optimization (PSO), and fast fuzzy C-mean algorithm (FFCM) is proposed. To increase the contrast of the CT liver image, the intensity values and high frequencies of the original images were removed and adjusted firstly using median filter approach. It is followed by transforming the abdominal CT image to NS domain, which is described using three subsets namely; percentage of truth T, percentage of falsity F, and percentage of indeterminacy I. The entropy is used to evaluate indeterminacy in NS domain. Then, the NS image is passed to optimized FFCM using PSO to enhance, optimize clusters results and segment liver from abdominal CT. Then, these segmented livers passed to PSOFCM technique to cluster and segment tumors. The experimental results obtained based on the analysis of variance (ANOVA) technique, Jaccard Index and Dice Coefficient measures show that, the overall accuracy offered by neutrosophic sets is accurate, less time consuming and less sensitive to noise and performs well on non-uniform CT images.