Rough sets and genetic algorithms: A hybrid approach to breast cancer classification

Citation:
Elshazly, Hanaa, N.; Ghali, A. Korany, and A. E. Hassanien, "Rough sets and genetic algorithms: A hybrid approach to breast cancer classification", World Congress on Information and Communication Technologies (WICT), pp. 260 - 265 , India, Oct. 30 2012-Nov.

Date Presented:

Oct. 30 2012-Nov

Abstract:

The use of computational intelligence systems such as rough sets, neural networks, fuzzy set, genetic algorithms, etc., for predictions and classification has been widely established. This paper presents a generic classification model based on a rough set approach and decision rules. To increase the efficiency of the classification process, boolean reasoning discretization algorithm is used to discretize the data sets. The approach is tested by a comparatif study of three different classifiers (decision rules, naive bayes and k-nearest neighbor) over three distinct discretization techniques (equal bigning, entropy and boolean reasoning). The rough set reduction technique is applied to find all the reducts of the data which contains the minimal subset of attributes that are associated with a class label for prediction. In this paper we adopt the genetic algorithms approach to reach reducts. Finally, decision rules were used as a classifier to evaluate the performance of the predicted reducts and classes. To evaluate the performance of our approach, we present tests on breast cancer data set. The experimental results obtained, show that the overall classification accuracy offered by the employed rough set approach and decision rules is high compared with other classification techniques including Bayes and k-nearest neighbor.

Related External Link