An overview of rough-hybrid approaches in image processing.

Citation:
Hassanien, A. E., A. Abraham, J. F. Peters, and G. Schaefer, "An overview of rough-hybrid approaches in image processing.", IEEE International Conference on Fuzzy Systems (ISBN 978-1-4244-1818-3), Hong Kong, China, pp, 2135 - 2142 , 1-6 June, , 2008.

Date Presented:

1-6 June,

Abstract:

Rough set theory offers a novel approach to manage uncertainty that has been used for the discovery of data dependencies, importance of features, patterns in sample data, feature space dimensionality reduction, and the classification of objects. Consequently, rough sets have been successfully employed for various image processing tasks including image segmentation, enhancement and classification. Nevertheless, while rough sets on their own provide a powerful technique, it is often the combination with other computational intelligence techniques that results in a truly effective approach. In this paper we show how rough sets have been combined with various other methodologies such as neural networks, wavelets, mathematical morphology, fuzzy sets, genetic algorithms, Bayesian approaches, swarm optimization, and support vector machines in the image processing domain.

Related External Link

Tourism