Identification of Heart Valve Disease using Bijective, Soft sets Theory

Citation:
and ella S. Udhaya Kumar, H. Hannah Inbarani, A. T. A. A. H., "Identification of Heart Valve Disease using Bijective, Soft sets Theory ", International Journal of Rough Sets and Data Analysis, vol. 1, issue 2, pp. , 1(2), 1-13, 2014.

Abstract:

Major complication of heart valve diseases is congestive heart valve failure. The heart is of essential significance to human beings. Auscultation with a stethoscope is considered as one of the techniques used in the analysis of heart diseases. Heart auscultation is a difficult task to determine the heart condition and requires some superior training of medical doctors. Therefore, the use of computerized techniques in the diagnosis of heart sounds may help the doctors in a clinical environment. Hence, in this study computer-aided heart sound diagnosis is performed to give support to doctors in decision making. In this study, a novel hybrid Rough-Bijective soft set is developed for the classification of heart valve diseases. A rough set (Quick Reduct) based feature selection technique is applied before classification for increasing the classification accuracy. The experimental results demonstrate that the overall classification accuracy offered by the employed Improved Bijective soft set approach (IBISOCLASS) provides higher accuracy compared with other classification techniques including hybrid Rough-Bijective soft set (RBISOCLASS), Bijective soft set (BISOCLASS), Decision table (DT), Naïve Bayes (NB) and J48.

Tourism