Evaluating an Evolutionary Particle Swarm Optimization for Fast Fuzzy C-Means Clustering on Liver CT Images

Citation:
Abder-Rahman Ali, Micael Couceiro, A. M. Anter, and A. E. Hassanien, "Evaluating an Evolutionary Particle Swarm Optimization for Fast Fuzzy C-Means Clustering on Liver CT Images", Computer Vision and Image Processing in Intelligent Systems and Multimedia Technologies, USA, IGI, 2014.

Abstract:

An Evolutionary Particle Swarm Optimization based on the Fractional Order Darwinian method for
optimizing a Fast Fuzzy C-Means algorithm is proposed. This chapter aims at enhancing the performance
of Fast Fuzzy C-Means, both in terms of the overall solution and speed. To that end, the concept
of fractional calculus is used to control the convergence rate of particles, wherein each one of them
represents a set of cluster centers. The proposed solution, denoted as FODPSO-FFCM, is applied on
liver CT images, and compared with Fast Fuzzy C-Means and PSOFFCM, using Jaccard Index and
Dice Coefficient. The computational efficiency is achieved by using the histogram of the image intensities
during the clustering process instead of the raw image data. The experimental results based on the
Analysis of Variance (ANOVA) technique and multiple pair-wise comparison show that the proposed
algorithm is fast, accurate, and less time consuming.