Mostafa, A., A. Fouad, M. A. Fattah, A. E. Hassanien, H. Hefny, S. Y. Zhu, and G. Schaefer,
"CT liver segmentation using artificial bee colony optimisation",
Procedia Computer Science, vol. 60: Elsevier, pp. 1622–1630, 2015.
Abstractn/a
Mostafa, A., H. Hefny, N. I. Ghali, A. E. Hassanien, and G. Schaefer,
"Evaluating the effects of image filters in CT liver CAD system",
Biomedical and Health Informatics (BHI), 2012 IEEE-EMBS International Conference on: IEEE, pp. 448–451, 2012.
Abstractn/a
Mostafa, A., M. Houseni, N. Allam, A. E. Hassanien, H. Hefny, and P. - W. Tsai,
"Antlion Optimization Based Segmentation for MRI Liver Images",
International Conference on Genetic and Evolutionary Computing: Springer International Publishing, pp. 265–272, 2016.
Abstractn/a
Mohamed Tahoun, Abd El Rahman Shabayek, H. Nassar, M. M. Giovenco, R. Reulke, Eid Emary, and A. E. Hassanien,
"Satellite Image Matching and Registration: A Comparative Study Using Invariant Local Features",
Image Feature Detectors and Descriptors: Springer International Publishing, pp. 135–171, 2016.
Abstractn/a
Mohamed Tahoun, Abd El Rahman Shabayek, R. Reulke, and A. E. Hassanien,
"Co-registration of Satellite Images Based on Invariant Local Features",
IEEE Conf. on Intelligent Systems (2) 2014: 653-660, Poland - Warsaw , 24 -26 Sept. , 2014.
AbstractDetection and matching of features from satellite images taken from different sensors, viewpoints, or at different times are important tasks when manipulating and processing remote sensing data for many applications. This paper presents a scheme for satellite image co-registration using invariant local features. Different corner and scale based feature detectors have been tested during the keypoint extraction, descriptor construction and matching processes. The framework suggests a sub-sampling process which controls the number of extracted key points for a real time processing and for minimizing the hardware requirements. After getting the pairwise matches between the input images, a full registration process is followed by applying bundle adjustment and image warping then compositing the registered version. Harris and GFTT have recorded good results with ASTER images while both with SURF give the most stable performance on optical images in terms of better inliers ratios and running time compared to the other detectors. SIFT detector has recorded the best inliers ratios on TerraSAR-X data while it still has a weak performance with other optical images like Rapid-Eye and ASTER.
Mohamed Tahoun, Abd El Rahman Shabayek, A. E. Hassanien, and R. Reulke,
"An Evaluation of Local Features on Satellite Images ",
The 37th International Conference on Telecommunications and Signal Processing (TSP), which will be held during 2014, ., Berlin, Germany, July 1-3,, 2014.
Moftah, H. M., A. E. Hassanien, A. M. Alimi, H. Karray, and M. F. Tolba,
"Ant-based clustering algorithm for magnetic resonance breast image segmentation",
Hybrid Intelligent Systems (HIS), 2013 13th International Conference on: IEEE, pp. 161–166, 2013.
Abstractn/a
Moftah, H. M., W. H. Elmasry, N. El-Bendary, A. E. Hassanien, and K. Nakamatsu,
"Evaluating the effects of k-means clustering approach on medical images",
Intelligent Systems Design and Applications (ISDA), 2012 12th International Conference on: IEEE, pp. 455–459, 2012.
Abstractn/a
Moftah, H. M., W. H. Elmasry, N. El-Bendary, A. E. Hassanien, and K. Nakamatsu,
"Evaluating the effects of k-means clustering approach on medical images",
Intelligent Systems Design and Applications (ISDA), 2012 12th International Conference on: IEEE, pp. 455–459, 2012.
Abstractn/a
Moftah, H. M., A. T. Azar, E. T. Al-Shammari, N. I. Ghali, A. E. Hassanien, and M. Shoman,
"Adaptive k-means clustering algorithm for MR breast image segmentation",
Neural Computing and Applications, vol. 24, no. 7-8: Springer London, pp. 1917–1928, 2014.
Abstractn/a
Moftah, H. M., A. T. Azar, E. T. Al-Shammari, N. I. Ghali, A. E. Hassanien, and M. Shoman,
"Adaptive k-means clustering algorithm for MR breast image segmentation",
Neural Computing and Applications, vol. 24, no. 7-8: Springer London, pp. 1917–1928, 2014.
Abstractn/a