Publications

Export 72 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
M
Moftah, H. M., W. H. Elmasry, N. El-Bendary, A. E. Hassanien, and K. Nakamatsu, "Evaluating the effects of k-means clustering approach on medical images", Intelligent Systems Design and Applications (ISDA), 2012 12th International Conference on: IEEE, pp. 455–459, 2012. Abstract
n/a
Moftah, H. M., A. T. Azar, E. T. Al-Shammari, N. I. Ghali, A. E. Hassanien, and M. Shoman, "Adaptive k-means clustering algorithm for MR breast image segmentation", Neural Computing and Applications, vol. 24, no. 7-8: Springer London, pp. 1917–1928, 2014. Abstract
n/a
Moftah, H. M., A. E. Hassanien, N. Ghali, and M. Shoman, Multi-objective optimization K-mean segmentation approach for MRI Breast Images, , 2012. Abstract
n/a
Moftah, H. M., A. T. Azar, E. T. Al-Shammari, N. I. Ghali, A. E. Hassanien, and M. Shoman, "Adaptive k-means clustering algorithm for MR breast image segmentation", Neural Computing and Applications, vol. 24, no. 7-8: Springer London, pp. 1917–1928, 2014. Abstract
n/a
Mohamed Abd. Elfattah, N. El-Bendary, M. A. A. Elsoud, Jan Platoš, and A. E. Hassanien, "Principal Component Analysis Neural Network Hybrid Classification Approach for Galaxies Images.", Innovations in Bio-inspired Computing and Applications. Advances in Intelligent Systems and Computing(Springer) , Czech republic , 2013.
Mohamed Tahoun, Abd El Rahman Shabayek, H. Nassar, M. M. Giovenco, R. Reulke, Eid Emary, and A. E. Hassanien, "Satellite Image Matching and Registration: A Comparative Study Using Invariant Local Features", Image Feature Detectors and Descriptors: Springer International Publishing, pp. 135–171, 2016. Abstract
n/a
Mohamed Tahoun, Abd El Rahman Shabayek, A. E. Hassanien, and R. Reulke, "An evaluation of local features on satellite images", Telecommunications and Signal Processing (TSP), 2015 38th International Conference on: IEEE, pp. 1–6, 2015. Abstract
n/a
Mohamed Tahoun, Abd El Rahman Shabayek, R. Reulke, and A. E. Hassanien, "Co-registration of Satellite Images Based on Invariant Local Features", IEEE Conf. on Intelligent Systems (2) 2014: 653-660, Poland - Warsaw , 24 -26 Sept. , 2014. Abstract

Detection and matching of features from satellite images taken from different sensors, viewpoints, or at different times are important tasks when manipulating and processing remote sensing data for many applications. This paper presents a scheme for satellite image co-registration using invariant local features. Different corner and scale based feature detectors have been tested during the keypoint extraction, descriptor construction and matching processes. The framework suggests a sub-sampling process which controls the number of extracted key points for a real time processing and for minimizing the hardware requirements. After getting the pairwise matches between the input images, a full registration process is followed by applying bundle adjustment and image warping then compositing the registered version. Harris and GFTT have recorded good results with ASTER images while both with SURF give the most stable performance on optical images in terms of better inliers ratios and running time compared to the other detectors. SIFT detector has recorded the best inliers ratios on TerraSAR-X data while it still has a weak performance with other optical images like Rapid-Eye and ASTER.

Mohamed Tahoun, Abd El Rahman Shabayek, and A. E. Hassanien, "Matching and Co-Registration of Satellite Images Using Local Features", Proc. International Conference on Space Optical Systems and Applications, (ICSOS), Kobe, Japan, May 7-9, 2014. tahoun_shabayek_abo_icsos_2014_japan.pdf.pdf
Mohamed Tahoun, A. E. Hassanien, and R. Reulke, "Registration of Optical and Radar Satellite Images Using Local Features and Non-rigid Geometric Transformations", Surface Models for Geosciences: Springer International Publishing, pp. 249–261, 2015. Abstract
n/a
Mohamed Tahoun, Abd El Rahman Shabayek, R. Reulke, and A. E. Hassanien, "Co-registration of Satellite Images Based on Invariant Local Features", Intelligent Systems' 2014: Springer International Publishing, pp. 653–660, 2015. Abstract
n/a
Mohamed Tahoun, A. E. R. Shabayayek, and A. E. Hassanien, "Matching and co-registration of satellite images using local features", Proceedings of the International Conference on Space Optical Systems and Applications, Kobe, Japan, vol. 79, 2014. Abstract
n/a
Mohamed Tahoun, Abd El Rahman Shabayek, A. E. Hassanien, and R. Reulke, "An Evaluation of Local Features on Satellite Images ", The 37th International Conference on Telecommunications and Signal Processing (TSP), which will be held during 2014, ., Berlin, Germany, July 1-3,, 2014. tahoun_shabayek_abo_reulke_tsp2014_berlin.pdf
Mokhtar, U., A. E. Hassanien, and M. A. H. A. S. Hefny, "Tomato leaves diseases detection approach based on support vector machines", IEEE iInternational Computer Engineering Conference - ICENCO , Cairo, 30 Dec, 2015.
Mokhtar, U., M. A. S. Ali, A. E. Hassanien, and H. Hefny, "Identifying two of tomatoes leaf viruses using support vector machine", Information Systems Design and Intelligent Applications: Springer India, pp. 771–782, 2015. Abstract
n/a
Mona M. Soliman, A. E. Hassanien, and H. M. Ons, "A Blind 3D Watermarking Approach for 3D Mesh Using Clustering Based Methods", IJCVIP - International Journal of Computer Vision and Image Processing, vol. 3, issue 2, pp. 43-53, 2013. Website
Mostafa, A., H. Hefny, N. I. Ghali, A. E. Hassanien, and G. Schaefer, "Evaluating the effects of image filters in CT liver CAD system", Biomedical and Health Informatics (BHI), 2012 IEEE-EMBS International Conference on: IEEE, pp. 448–451, 2012. Abstract
n/a
Mostafa, A., A. Fouad, M. A. Fattah, A. E. Hassanien, and H. Hefny, "Artificial Bee Colony Based Segmentation for CT Liver Images", Medical Imaging in Clinical Applications: Springer International Publishing, pp. 409–430, 2016. Abstract
n/a
Mostafa, A., H. Hefny, N. I. Ghali, A. E. Hassanien, and G. Schaefer, "Evaluating the effects of image filters in CT liver CAD system", Biomedical and Health Informatics (BHI), 2012 IEEE-EMBS International Conference on: IEEE, pp. 448–451, 2012. Abstract
n/a
Mostafa, A., M. A. Fattah, A. Fouad, A. E. Hassanien, and H. Hefny, "Enhanced region growing segmentation for CT liver images", The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt: Springer International Publishing, pp. 115–127, 2016. Abstract
n/a
Mostafa, A., A. Fouad, M. Houseni, N. Allam, A. E. Hassanien, H. Hefny, and I. Aslanishvili, "A Hybrid Grey Wolf Based Segmentation with Statistical Image for CT Liver Images", International Conference on Advanced Intelligent Systems and Informatics: Springer International Publishing, pp. 846–855, 2016. Abstract
n/a
Mostafa, A., A. E. Hassanien, and H. A. Hefny, " Grey Wolf Optimization-Based Segmentation Approach for Abdomen CT Liver Images", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

In the recent days, a great deal of researches is interested in segmentation of different organs in medical images. Segmentation of liver is as an initial phase in liver diagnosis, it is also a challenging task due to its similarity with other organs intensity values. This paper aims to propose a grey wolf optimization based approach for segmenting liver from the abdomen CT images. The proposed approach combines three parts to achieve this goal. It combines the usage of grey wolf optimization, statistical image of liver, simple region growing and Mean shift clustering technique. The initial cleaned image is passed to Grey Wolf (GW) optimization technique. It calculated the centroids of a predefined number of clusters. According to each pixel intensity value in the image, the pixel is labeled by the number of the nearest cluster. A binary statistical image of liver is used to extract the potential area that liver might exist in. It is multiplied by the clustered image to get an initial segmented liver. Then region growing (RG) is used to enhance the segmented liver. Finally, mean shift clustering technique is applied to extract the regions of interest in the segmented liver. A set of 38 images, taken in pre-contrast phase, was used for liver segmentation and testing the proposed approach. For evaluation, similarity index measure is used to validate the success of the proposed approach. The experimental results of the proposed approach showed that the overall accuracy offered by the proposed approach, results in 94.08% accuracy.

Mostafa, A., M. A. Fattah, A. Fouad, A. E. Hassanien, and T. - H. Kim, "Region growing segmentation with iterative K-means for CT liver images", Advanced Information Technology and Sensor Application (AITS), 2015 4th International Conference on: IEEE, pp. 88–91, 2015. Abstract
n/a
Mostafa, A., M. A. Fattah, A. Ali, and A. E. Hassanin, "Enhanced Region Growing Segmentation For CT Liver Images", the 1st International Conference on Advanced Intelligent Systems and Informatics (AISI’15) Springer, . Beni Suef University, Beni Suef, Egypt , Nov. 28-30 , 2015. Abstract

This paper intends to enhance the image for the next usage
of region growing technique for segmenting the region of liver away from
other organs. The approach depends on a preprocessing phase to enhance
the appearance of the boundaries of the liver. This is performed using
contrast stretching and some morphological operations to prepare the
image for next segmentation phase. The approach starts with combining
Otsu's global thresholding with dilation and erosion to remove image
annotation and machine's bed. The second step of image preparation
is to connect ribs, and apply lters to enhance image and deepen liver
boundaries. The combined lters are contrast stretching and texture l-
ters. The last step is to use a simple region growing technique, which has
low computational cost, but ignored for its low accuracy. The proposed
approach is appropriate for many images, where liver could not be sep-
arated before, because of the similarity of the intensity with other close
organs. A set of 44 images taken in pre-contrast phase, were used to test
the approach. Validating the approach has been done using similarity
index. The experimental results, show that the overall accuracy o ered
by the proposed approach results in 91.3% accuracy.

Mostafa, A., A. E. Hassanien, and H. A. Hefny, "Grey Wolf Optimization-Based Segmentation Approach for Abdomen CT Liver Images", Handbook of Research on Machine Learning Innovations and Trends: IGI Global, pp. 562–581, 2017. Abstract
n/a