Publications

Export 182 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
Tharwatd, A., T. Gaber, and A. E. Hassanien, " One-dimensional vs. two-dimensional based features: Plant identification approach, ", Journal of Applied Logic , vol. Available online 15 November 2017 , 2017. AbstractWebsite

The number of endangered species has been increased due to shifts in the agricultural production, climate change, and poor urban planning. This has led to investigating new methods to address the problem of plant species identification/classification. In this paper, a plant identification approach using 2D digital leaves images was proposed. The approach used two features extraction methods based on one-dimensional (1D) and two-dimensional (2D) and the Bagging classifier. For the 1D-based methods, Principal Component Analysis (PCA), Direct Linear Discriminant Analysis (DLDA), and PCA + LDA techniques were applied, while 2DPCA and 2DLDA algorithms were used for the 2D-based method. To classify the extracted features in both methods, the Bagging classifier, with the decision tree as a weak learner was used. The five variants, i.e. PCA, PCA + LDA, DLDA, 2DPCA, and 2DLDA, of the approach were tested using the Flavia public dataset which consists of 1907 colored leaves images. The accuracy of these variants was evaluated and the results showed that the 2DPCA and 2DLDA methods were much better than using the PCA, PCA + LDA, and DLDA. Furthermore, it was found that the 2DLDA method was the best one and the increase of the weak learners of the Bagging classifier yielded a better classification accuracy. Also, a comparison with the most related work showed that our approach achieved better accuracy under the same dataset and same experimental setup.

Osman, M. A., A. Darwish, A. Z. Ghalwash, and A. E. Hassanien, "Enhanced Breast Cancer Diagnosis System Using Fuzzy Clustering Means Approach in Digital Mammography", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

Breast cancer or malignant breast neoplasm is the most common type of cancer in women. Researchers are not sure of the exact cause of breast cancer. If the cancer can be detected early, the options of treatment and the chances of total recovery will increase. Computer Aided Diagnostic (CAD) systems can help the researchers and specialists in detecting the abnormalities early. The main goal of computerized breast cancer detection in digital mammography is to identify the presence of abnormalities such as mass lesions and Micro calcification Clusters (MCCs). Early detection and diagnosis of breast cancer represent the key for breast cancer control and can increase the success of treatment. This chapter investigates a new CAD system for the diagnosis process of benign and malignant breast tumors from digital mammography. X-ray mammograms are considered the most effective and reliable method in early detection of breast cancer. In this chapter, the breast tumor is segmented from medical image using Fuzzy Clustering Means (FCM) and the features for mammogram images are extracted. The results of this work showed that these features are used to train the classifier to classify tumors. The effectiveness and performance of this work is examined using classification accuracy, sensitivity and specificity and the practical part of the proposed system distinguishes tumors with high accuracy.

Osman, M. A., A. Darwish, A. Z. Ghalwash, and A. E. Hassanien, "Enhanced Breast Cancer Diagnosis System Using Fuzzy Clustering Means Approach in Digital Mammography", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

Breast cancer or malignant breast neoplasm is the most common type of cancer in women. Researchers are not sure of the exact cause of breast cancer. If the cancer can be detected early, the options of treatment and the chances of total recovery will increase. Computer Aided Diagnostic (CAD) systems can help the researchers and specialists in detecting the abnormalities early. The main goal of computerized breast cancer detection in digital mammography is to identify the presence of abnormalities such as mass lesions and Micro calcification Clusters (MCCs). Early detection and diagnosis of breast cancer represent the key for breast cancer control and can increase the success of treatment. This chapter investigates a new CAD system for the diagnosis process of benign and malignant breast tumors from digital mammography. X-ray mammograms are considered the most effective and reliable method in early detection of breast cancer. In this chapter, the breast tumor is segmented from medical image using Fuzzy Clustering Means (FCM) and the features for mammogram images are extracted. The results of this work showed that these features are used to train the classifier to classify tumors. The effectiveness and performance of this work is examined using classification accuracy, sensitivity and specificity and the practical part of the proposed system distinguishes tumors with high accuracy.

Hassanien, A. E., T. Gaber, U. Mokhtar, and H. Hefny, "An Improved Moth Flame Optimization Algorithm based on Rough Sets for Tomato Diseases Detection", Journal of Computers and Electronics in Agriculture, vol. 136, issue 15, pp. 86-96 , 2017. AbstractWebsite

Plant diseases is one of the major bottlenecks in agricultural production that have bad effects on the economic of any country. Automatic detection of such disease could minimize these effects. Features selection is a usual pre-processing step used for automatic disease detection systems. It is an important process for detecting and eliminating noisy, irrelevant, and redundant data. Thus, it could lead to improve the detection performance. In this paper, an improved moth-flame approach to automatically detect tomato diseases was proposed. The moth-flame fitness function depends on the rough sets dependency degree and it takes into a consideration the number of selected features. The proposed algorithm used both of the power of exploration of the moth flame and the high performance of rough sets for the feature selection task to find the set of features maximizing the classification accuracy which was evaluated using the support vector machine (SVM). The performance of the MFORSFS algorithm was evaluated using many benchmark datasets taken from UCI machine learning data repository and then compared with feature selection approaches based on Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) with rough sets. The proposed algorithm was then used in a real-life problem, detecting tomato diseases (Powdery mildew and early blight) where a real dataset of tomato disease were manually built and a tomato disease detection approach was proposed and evaluated using this dataset. The experimental results showed that the proposed algorithm was efficient in terms of Recall, Precision, Accuracy and F-Score, as long as feature size reduction and execution time.

Alaa Tharwat, T. Gaber, Abdelhameed Ibrahim, and A. E. Hassanien, "Linear Discriminant Analysis: A Detailed Tutorial", AI Communications, IOS press, 2017. linear_discreminate_analysisp_detailed_tutorails.pdf
Sara Ahmed, T. Gaber, and A. E. Hassanien, "Telemetry Data Mining Techniques, Applications, and Challenges", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

The most recent rise of telemetry is around the use of Radio-telemetry technology for tracking the traces of moving objects. Initially, the radio telemetry was first used in the 1960s for studying the behavior and ecology of wild animals. Nowadays, there's a wide spectrum application of can benefits from radio telemetry technology with tracking methods, such as path discovery, location prediction, movement behavior analysis, and so on. Accordingly, rapid advance of telemetry tracking system boosts the generation of large-scale trajectory data of tracking traces of moving objects. In this study, we survey various applications of trajectory data mining and review an extensive collection of existing trajectory data mining techniques to be used as a guideline for designing future trajectory data mining solutions.

Khairy, M., Alaa Tharwat, T. Gaber, and A. E. Hassanien, "A wheelchair control system using the human machine interaction: Single-modal and Multi-modal approaches", ournal of Intelligent Systems (JISYS), vol. In press, 2017.
Osman, M. A., A. Darwish, A. E. Khedr, A. Z. Ghalwash, and A. E. Hassanien, "Enhanced Breast Cancer Diagnosis System Using Fuzzy Clustering Means Approach in Digital Mammography", Handbook of Research on Machine Learning Innovations and Trends: IGI Global, pp. 925–941, 2017. Abstract
n/a
Hassanien, A. E., T. Gaber, U. Mokhtar, and H. Hefny, "An improved moth flame optimization algorithm based on rough sets for tomato diseases detection", Computers and Electronics in Agriculture, vol. 136: Elsevier, pp. 86–96, 2017. Abstract
n/a
Alaa Tharwat, T. Gaber, A. E. Hassanien, and B. E. Elnaghi, "Particle Swarm Optimization: A Tutorial", Handbook of Research on Machine Learning Innovations and Trends: IGI Global, pp. 614–635, 2017. Abstract
n/a
Dey, N., A. S. Ashour, S. Chakraborty, S. Banerjee, E. Gospodinova, M. Gospodinov, and A. E. Hassanien, "Watermarking in Biomedical Signal Processing", Intelligent Techniques in Signal Processing for Multimedia Security: Springer International Publishing, pp. 345–369, 2017. Abstract
n/a
2016
Hassanien, A. - E., C. Grosan, and M. F. Tolba, Applications of Intelligent Optimization in Biology and Medicine Current Trends and Open Problems, , Germany , Springer , 2016. Website
Gaber, T., Alaa Tharwat, A. E. Hassanien, and V. Snasel, "Biometric cattle identification approach based on Weber’s Local Descriptor and AdaBoost classifier", Computers and Electronics in Agriculture, vol. 122 , issue March 2016 , pp. 55–66, 2016. Website
Gaber, T., Alaa Tharwat, and A. E. Hassanien, "One-dimensional vs. two-dimensional based features: Plant identification approach", Journal of Applied Logic, 2016. AbstractWebsite

The number of endangered species has been increased due to shifts in the agricultural production, climate change, and poor urban planning. This has led to investigating new methods to address the problem of plant species identification/classification. In this paper, a plant identification approach using 2D digital leaves images was proposed. The approach used two features extraction methods based on one-dimensional (1D) and two-dimensional (2D) and the Bagging classifier. For the 1D-based methods, Principal Component Analysis (PCA), Direct Linear Discriminant Analysis (DLDA), and PCA + LDA techniques were applied, while 2DPCA and 2DLDA algorithms were used for the 2D-based method. To classify the extracted features in both methods, the Bagging classifier, with the decision tree as a weak learner was used. The five variants, i.e. PCA, PCA + LDA, DLDA, 2DPCA, and 2DLDA, of the approach were tested using the Flavia public dataset which consists of 1907 colored leaves images. The accuracy of these variants was evaluated and the results showed that the 2DPCA and 2DLDA methods were much better than using the PCA, PCA + LDA, and DLDA. Furthermore, it was found that the 2DLDA method was the best one and the increase of the weak learners of the Bagging classifier yielded a better classification accuracy. Also, a comparison with the most related work showed that our approach achieved better accuracy under the same dataset and same experimental setup.

Alaa Tharwat, B. E. Elnaghi, A. M. Ghanem, and A. E. Hassanien, "Automatically Human Age Estimation Approach via Two-Dimensional Facial Image Analysis", International Conference on Advanced Intelligent Systems and Informatics: Springer International Publishing, pp. 491–501, 2016. Abstract
n/a
Gaber, T., Alaa Tharwat, A. E. Hassanien, and V. Snasel, "Biometric cattle identification approach based on weber’s local descriptor and adaboost classifier", Computers and Electronics in Agriculture, vol. 122: Elsevier, pp. 55–66, 2016. Abstract
n/a
Kotyk, T., N. Dey, A. S. Ashour, C. V. A. Drugarin, T. Gaber, A. E. Hassanien, and V. Snasel, "Detection of Dead stained microscopic cells based on Color Intensity and Contrast", The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt: Springer International Publishing, pp. 57–68, 2016. Abstract
n/a
Fouad, M. M., H. M. Zawbaa, T. Gaber, V. Snasel, and A. E. Hassanien, "A Fish Detection Approach Based on BAT Algorithm", The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt: Springer International Publishing, pp. 273–283, 2016. Abstract
n/a
Alaa Tharwat, T. Gaber, A. E. Hassanien, G. Schaefer, and J. - S. Pan, "A Fully-Automated Zebra Animal Identification Approach Based on SIFT Features", International Conference on Genetic and Evolutionary Computing: Springer International Publishing, pp. 289–297, 2016. Abstract
n/a
Abdelhameed Ibrahim, T. Gaber, T. Horiuchi, V. Snasel, and A. E. Hassanien, "Human Thermal Face Extraction Based on SuperPixel Technique", The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt: Springer International Publishing, pp. 163–172, 2016. Abstract
n/a
Ahmed, K., A. A. Ewees, M. abd elaziz, A. E. Hassanien, T. Gaber, P. - W. Tsai, and J. - S. Pan, "A Hybrid Krill-ANFIS Model for Wind Speed Forecasting", International Conference on Advanced Intelligent Systems and Informatics: Springer International Publishing, pp. 365–372, 2016. Abstract
n/a
Alaa Tharwat, T. Gaber, and A. E. Hassanien, "One-dimensional vs. two-dimensional based features: Plant identification approach", Journal of Applied Logic: Elsevier, 2016. Abstract
n/a
Alaa Tharwat, T. Gaber, Y. M. Awad, N. Dey, and A. E. Hassanien, "Plants identification using feature fusion technique and bagging classifier", The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt: Springer International Publishing, pp. 461–471, 2016. Abstract
n/a
Hassanien, A. E., K. Shaalan, T. Gaber, A. T. Azar, and F. Tolba, Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016, : Springer, 2016. Abstract
n/a
Tourism