Publications

Export 268 results:
Sort by: [ Author  (Asc)] Title Type Year
[A] B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Alaa Tharwat, Ahmed M. Ghanem, and A. E. Hassanien, "Three different classifiers for facial age estimation based on K-nearest neighbor", The 9th IEEE International Computer Engineering Conference (ICENCO 2013) - pp. 55 - 60 , 2013, Cairo, EGYPT -, December 29-30, , 2013.
Alaa Tharwat, Y. Abdelmonem, and A. E. Hassanien, " A Predictive Model for Toxicity Effects Assessment of Biotransformed Hepatic Drugs Using Iterative Sampling Method, ", Nature Scientific Report,, vol. 6, Article number: 38660 , 2016. AbstractWebsite

Measuring toxicity is one of the main steps in drug development. Hence, there is a high demand for computational models to predict the toxicity effects of the potential drugs. In this study, we used a dataset, which consists of four toxicity effects:mutagenic, tumorigenic, irritant and reproductive effects. The proposed model consists of three phases. In the first phase, rough set-based methods are used to select the most discriminative features for reducing the classification time and improving the classification performance. Due to the imbalanced class distribution, in the second phase, different sampling methods such as Random Under-Sampling, Random Over-Sampling and Synthetic Minority Oversampling Technique are used to solve the problem of imbalanced datasets. ITerative Sampling (ITS) method is proposed to avoid the limitations of those methods. ITS method has two steps. The first step (sampling step) iteratively modifies the prior distribution of the minority and majority classes. In the second step, a data cleaning method is used to remove the overlapping that is produced from the first step. In the third phase, Bagging classifier is used to classify an unknown drug into toxic or non-toxic. The experimental results proved that the proposed model performed well in classifying the unknown samples according to all toxic effects in the imbalanced datasets.

Alaa Tharwat, H. M. Zawbaa, T. Gaber, A. E. Hassanien, and V. Snasel, "Automated zebrafish-based toxicity test using bat optimization and adaboost classifier", Computer Engineering Conference (ICENCO), 2015 11th International: IEEE, pp. 169–174, 2015. Abstract
n/a
Alaa Tharwat, Hani Mahdi, and A. E. Hassanien, "Plant Recommender System Based on Multi-label Classification", International Conference on Advanced Intelligent Systems and Informatics: Springer International Publishing, pp. 825–835, 2016. Abstract
n/a
Alaa Tharwat, Abdelhameed Ibrahim, A. E. Hassanien, and G. Schaefer, "Ear Recognition Using Block-Based Principal Component Analysis and Decision Fusion", 6th International Conference Pattern Recognition and Machine Intelligence (PReMI 2015:), Warsaw, Poland, 2 July, 2015.
Alaa Tharwat, Yasmine S. Moemen, and A. E. Hassanien, "Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines", Journal of Biomedical Informatics, vol. 68, pp. 132-149 , 2017. AbstractWebsite

Measuring toxicity is an important step in drug development. Nevertheless, the current experimental methods used to estimate the drug toxicity are expensive and time-consuming, indicating that they are not suitable for large-scale evaluation of drug toxicity in the early stage of drug development. Hence, there is a high demand to develop computational models that can predict the drug toxicity risks. In this study, we used a dataset that consists of 553 drugs that biotransformed in liver. The toxic effects were calculated for the current data, namely, mutagenic, tumorigenic, irritant and reproductive effect. Each drug is represented by 31 chemical descriptors (features). The proposed model consists of three phases. In the first phase, the most discriminative subset of features is selected using rough set-based methods to reduce the classification time while improving the classification performance. In the second phase, different sampling methods such as Random Under-Sampling, Random Over-Sampling and Synthetic Minority Oversampling Technique (SMOTE), BorderLine SMOTE and Safe Level SMOTE are used to solve the problem of imbalanced dataset. In the third phase, the Support Vector Machines (SVM) classifier is used to classify an unknown drug into toxic or non-toxic. SVM parameters such as the penalty parameter and kernel parameter have a great impact on the classification accuracy of the model. In this paper, Whale Optimization Algorithm (WOA) has been proposed to optimize the parameters of SVM, so that the classification error can be reduced. The experimental results proved that the proposed model achieved high sensitivity to all toxic effects. Overall, the high sensitivity of the WOA + SVM model indicates that it could be used for the prediction of drug toxicity in the early stage of drug development.

Alaa Tharwat, B. E. Elnaghi, and A. E. Hassanien, "Meta-Heuristic Algorithm Inspired by Grey Wolves for Solving Function Optimization Problems", International Conference on Advanced Intelligent Systems and Informatics: Springer International Publishing, pp. 480–490, 2016. Abstract
n/a
Alaa Tharwat, T. Gaber, A. E. Hassanien, and B. E. Elnaghi, "Particle Swarm Optimization: A Tutorial", Handbook of Research on Machine Learning Innovations and Trends: IGI Global, pp. 614–635, 2017. Abstract
n/a
Alaa Tharwat, Hani Mahdi, Adel El Hennawy, and A. E. Hassanien, "Face Sketch Synthesis and Recognition Based on Linear Regression Transformation and Multi-Classifier Technique", the 1st International Conference on Advanced Intelligent Systems and Informatics (AISI’15) Springer, Beni Suef University, Beni Suef, Eg, Nov. 28-30, 2015. Abstract

Fish detection and identi cation are important steps towards
monitoring sh behavior. The importance of such monitoring step comes
from the need for better understanding of the sh ecology and issuing
conservative actions for keeping the safety of this vital food resource.
The recent advances in machine learning approaches allow many appli-
cations to easily analyze and detect a number of sh species. The main
competence between these approaches is based on two main detection
parameters: the time and the accuracy measurements. Therefore, this
paper proposes a sh detection approach based on BAT optimization
algorithm (BA). This approach aims to reduce the classi cation time
within the sh detection process. The performance of this system was
evaluated by a number of well-known machine learning classi ers, KNN,
ANN, and SVM. The approach was tested with 151 images to detect the
Nile Tilapia sh species and the results showed that k-NN can achieve
high accuracy 90%, with feature reduction ratio close to 61% along with
a noticeable decrease in the classi cation time.

Alaa Tharwat, T. Gaber, and A. E. Hassanien, "Two biometric approaches for cattle identification based on features and classifiers fusion", International Journal of Image Mining, vol. 1, no. 4: Inderscience Publishers (IEL), pp. 342–365, 2015. Abstract
n/a
Alaa Tharwat, B. E. Elnaghi, A. M. Ghanem, and A. E. Hassanien, "Automatically Human Age Estimation Approach via Two-Dimensional Facial Image Analysis", International Conference on Advanced Intelligent Systems and Informatics: Springer International Publishing, pp. 491–501, 2016. Abstract
n/a
Alaa Tharwat, T. Gaber, and A. E. Hassanien, "Cattle Identification based on Muzzle Images using Gabor Features and SVM Classifier ", The 2nd International Conference on Advanced Machine Learning Technologies and Applications , Egypt, November 17-19, , 2014.
Alaa Tharwat, T. Gaber, A. E. Hassanien, M. K. Shahin, and B. Refaat, "Sift-based arabic sign language recognition system", Afro-european conference for industrial advancement: Springer International Publishing, pp. 359–370, 2015. Abstract
n/a
Alaa Tharwat, M. M. Sharif, A. E. Hassanien, and H. A. Hefeny, "Improving Enzyme Function Classification Performance Based on Score Fusion Method", International Conference on Hybrid Artificial Intelligence Systems: Springer International Publishing, pp. 530–542, 2015. Abstract
n/a
Alaa Tharwat, Y. S. Moemen, and A. E. Hassanien, "Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines", Journal of Biomedical Informatics, vol. 68: Academic Press, pp. 132–149, 2017. Abstract
n/a
Alaa Tharwat, M. Elhoseny, A. E. Hassanien, and T. G. A. and Kumar, "Intelligent Bézier curve-based path planning model using Chaotic Particle Swarm Optimization algorithm", Cluster Computing, 2018. Abstract

Path planning algorithms have been used in different applications with the aim of finding a suitable collision-free path which satisfies some certain criteria such as the shortest path length and smoothness; thus, defining a suitable curve to describe path is essential. The main goal of these algorithms is to find the shortest and smooth path between the starting and target points. This paper makes use of a Bézier curve-based model for path planning. The control points of the Bézier curve significantly influence the length and smoothness of the path. In this paper, a novel Chaotic Particle Swarm Optimization (CPSO) algorithm has been proposed to optimize the control points of Bézier curve, and the proposed algorithm comes in two variants: CPSO-I and CPSO-II. Using the chosen control points, the optimum smooth path that minimizes the total distance between the starting and ending points is selected. To evaluate the CPSO algorithm, the results of the CPSO-I and CPSO-II algorithms are compared with the standard PSO algorithm. The experimental results proved that the proposed algorithm is capable of finding the optimal path. Moreover, the CPSO algorithm was tested against different numbers of control points and obstacles, and the CPSO algorithm achieved competitive results.

Alaa Tharwat, Hani Mahdi, A. E. Hassanien, and Adel El Hennawy, "Face Sketch Recognition Using Local Invariant Features", 7th IEEE International Conference of Soft Computing and Pattern Recognition, , Kyushu University, Fukuoka, Japan, , November 13 - 15, 2015. Abstract

Face sketch recognition is one of the recent biometrics,
which is used to identify criminals. In this paper, a
proposed model is used to identify face sketch images based
on local invariant features. In this model, two local invariant
feature extraction methods, namely, Scale Invariant Feature
Transform (SIFT) and Local Binary Patterns (LBP) are used
to extract local features from photos and sketches. Minimum
distance and Support Vector Machine (SVM) classifiers are used
to match the features of an unknown sketch with photos. Due to
high dimensional features, Direct Linear Discriminant Analysis
(Direct-LDA) is used. CHUK face sketch database images is used
in our experiments. The experimental results show that SIFT
method is robust and it extracts discriminative features than LBP.
Moreover, different parameters of SIFT and LBP are discussed
and tuned to extract robust and discriminative features.

Alaa Tharwat, T. Gaber, Y. M. Awad, N. Dey, and A. E. Hassanien, "Plants identification using feature fusion technique and bagging classifier", The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt: Springer International Publishing, pp. 461–471, 2016. Abstract
n/a
Alaa Tharwat, T. Gaber, A. E. Hassanien, G. Schaefer, and J. - S. Pan, "A Fully-Automated Zebra Animal Identification Approach Based on SIFT Features", International Conference on Genetic and Evolutionary Computing: Springer International Publishing, pp. 289–297, 2016. Abstract
n/a
Alaa Tharwat, T. Gaber, A. E. Hassanien, H. A. Hassanien, and M. F. Tolba, "Cattle identification using muzzle print images based on texture features approach", Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing and Applications IBICA 2014: Springer International Publishing, pp. 217–227, 2014. Abstract
n/a
Alaa Tharwat, T. Gaber, A. E. Hassanien, H. A. Hassanien, and M. F. Tolba, "Cattle Identi cation using Muzzle Print Images based on Texture Features Approach", The 5th International Conference on Innovations in Bio-Inspired Computing and Applications (Springer) IBICA2014, Ostrava, Czech Republic., 22-24 June, 2014. Abstractibica2014_p26.pdf

The increasing growth of the world trade and growing con-
cerns of food safety by consumers need a cutting-edge animal identi-
cation and traceability systems as the simple recording and reading
of tags-based systems are only eective in eradication programs of na-
tional disease. Animal biometric-based solutions, e.g. muzzle imaging
system, oer an eective and secure, and rapid method of addressing
the requirements of animal identication and traceability systems. In
this paper, we propose a robust and fast cattle identication approach.
This approach makes use of Local Binary Pattern (LBP) to extract local
invariant features from muzzle print images. We also applied dierent
classiers including Nearest Neighbor, Naive Bayes, SVM and KNN for
cattle identication. The experimental results showed that our approach
is superior than existed works as ours achieves 99,5% identication accu-
racy. In addition, the results proved that our proposed method achieved
this high accuracy even if the testing images are rotated in various angels
or occluded with dierent parts of their sizes.

Alaa Tharwat, Abdelhameed Ibrahim, A. E. Hassanien, and G. Schaefer, "Ear recognition using block-based principal component analysis and decision fusion", International Conference on Pattern Recognition and Machine Intelligence: Springer International Publishing, pp. 246–254, 2015. Abstract
n/a
Alaa Tharwat, Hani Mahdi, Adel El Hennawy, and A. E. Hassanien, "Face Sketch Recognition Using Local Invariant", 7th IEEE International Conference of Soft Computing and Pattern Recognition, Kyushu University, Fukuoka, Japan, , 2015, November 13 - 15, 2015. Abstract

n/a

Alaa Tharwat, T. Gaber, M. K. Shahin, B. Refaat, and A. E. H. Ali, "SIFT-based Arabic Sign Language Recognition System", The 1st Afro-European Conference for Industrial Advancement, , Addis Ababa, Ethiopia, November 17-19, , 2014.
Alaa Tharwat, T. Gaber, and A. E. Hassanien, "Cattle identification based on muzzle images using gabor features and SVM classifier", International Conference on Advanced Machine Learning Technologies and Applications: Springer International Publishing, pp. 236–247, 2014. Abstract
n/a
Tourism