Publications

Export 1248 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Salama, M. A., and A. E. Hassanien, "Binarization and validation in formal concept analysis", International Journal of Systems Biology and Biomedical Technologies (IJSBBT), vol. 1, no. 4: IGI Global, pp. 16–27, 2012. Abstract
n/a
Salama, M., A. E. Hassanien, and A. A. Fahmy, "Pattern-based Subspace Classification Approach", The Second IEEE World Congress on Nature and Biologically Inspired Computing (NaBIC2010), Kitakyushu- Japan, 15 Dec, 2010. Abstract

The use of patterns in predictive models has received a lot of attention in recent years. This paper presents a pattern-based classification model which extracts the patterns that have similarity among all objects in a specific class. This introduced model handles the problem of the dependence on a user-defined threshold that appears in the pattern-based subspace clustering. The experimental results obtained, show that the overall pattern-based classification accuracy is high compared with other machine learning techniques including Support vector machine, Bayesian Network, multi-layer perception and decision trees.

Salama, M. A., A. E. Hassanien, and A. A. Fahmy, "Pattern-based subspace classification model", Nature and Biologically Inspired Computing (NaBIC), 2010 Second World Congress on: IEEE, pp. 357–362, 2010. Abstract
n/a
Salama, M. A., and A. E. Hassanien, "Fuzzification of Euclidean Space Approach in Machine Learning Techniques", International Journal of Service Science, Management, Engineering, and Technology (IJSSMET), vol. 5, no. 4: IGI Global, pp. 29–43, 2014. Abstract
n/a
Salama, M. A., A. E. Hassanien, and A. A. Fahmy, "Uni-class pattern-based classification model", Intelligent Systems Design and Applications (ISDA), 2010 10th International Conference on: IEEE, pp. 1293–1297, 2010. Abstract
n/a
Salama, M. A., A. E. Hassanien, and A. Mostafa, "The prediction of virus mutation using neural networks and rough set techniques", EURASIP Journal on Bioinformatics and Systems Biology, vol. 2016, no. 1: Springer International Publishing, pp. 1–11, 2016. Abstract
n/a
Salama, M. A., H. F. Eid, R. A. Ramadan, A. Darwish, and A. E. Hassanien, "Hybrid intelligent intrusion detection scheme", Soft computing in industrial applications: Springer Berlin Heidelberg, pp. 293–303, 2011. Abstract
n/a
Salama, M. A., A. E. Hassanien, and K. Revett, "Employment of neural network and rough set in meta-learning", Memetic Computing, vol. 5, no. 3: Springer Berlin Heidelberg, pp. 165–177, 2013. Abstract
n/a
Salama, M., Data Mining for Medical Informatics, , Cairo, Cairo Unv, 2012. AbstractThesis.pdfPresentation.pdf

The work presented in this thesis investigates the nature of real-life data, mainly in the medical field, and the problems in handling such nature by the conventional data mining techniques. Accordingly, a set of alternative techniques are proposed in this thesis to handle the medical data in the three stages of data mining process. In the first stage which is preprocessing, a proposed technique named as interval-based feature evaluation technique that depends on a hypothesis that the decrease of the overlapped interval of values for every class label leads to increase the importance of such attribute. Such technique handles the difficulty of dealing with continuous data attributes without the need of applying discretization of the input and it is proved by comparing the results of the proposed technique to other attribute evaluation and selection techniques. Also in the preprocessing stage, the negative effect of normalization algorithm before applying the conventional PCA has been investigated and how the avoidance of such algorithm enhances the resulted classification accuracy. Finally in the preprocessing stage, an experimental analysis introduces the ability of rough set methodology to successfully classify data without the need of applying feature reduction technique. It shows that the overall classification accuracy offered by the employed rough set approach is high compared with other machine learning techniques including Support Vector Machine, Hidden Naive Bayesian network, Bayesian network and other techniques.
In the machine learning stage, frequent pattern-based classification technique is proposed; it depends on the detection of variation of attributes among objects of the same class. The preprocessing of the data like standardization, normalization, discretization or feature reduction is not required in this technique which enhances the performance in time and keeps the original data without being distorted. Another contribution has been proposed in the machine learning stage including the support vector machine and fuzzy c-mean clustering techniques; this contribution is about the enhancement of the Euclidean space calculations through applying the fuzzy logic in such calculations. This enhancement has used chimerge feature evaluation techniques in applying fuzzification on the level of features. A comparison is applied on these enhanced techniques to the other classical data mining techniques and the results shows that classical models suffers from low classification accuracy due to the dependence of un-existed presumption.
Finally, in the visualization stage, a proposed technique is presented to visualize the continuous data using Formal Concept Analysis that is better than the complications resulted from the scaling algorithms.

Salama, M., A. E. Hassanien, and Adel Alimi, "Formal concept analysis approach for comparison between mutagenicity and carcinogenicity in Cheminformatics. ", 13th IEEE International Conference on Hybrid Intelligent Systems |(HIS13) Tunisia, 4-6 Dec. pp. 268-273, 2013, Tunisia, , 4-6 Dec, 2013.
Salama, M. A., A. E. Hassanien, and K. Revett, "Employment of neural network and rough set in meta-learning.", Memetic Computing- Springer, vol. 5, issue 3, pp. 165-177, 2013. Website
Salama, M. A., N. El-Bendary, and A. E. Hassanien, "Towards secure mobile agent based e-cash system", Proceedings of the First International Workshop on Security and Privacy Preserving in e-Societies: ACM, pp. 1–6, 2011. Abstract
n/a
Salama, M. A., A. E. Hassanien, and A. A. Fahmy, "Reducing the influence of normalization on data classification", Computer Information Systems and Industrial Management Applications (CISIM), 2010 International Conference on: IEEE, pp. 609–613, 2010. Abstract
n/a
Salama, M. A., N. El-Bendary, A. E. Hassanien, K. Revett, and A. A. Fahmy, "Interval-based attribute evaluation algorithm", Computer Science and Information Systems (FedCSIS), 2011 Federated Conference on: IEEE, pp. 153–156, 2011. Abstract
n/a
Salama, M., M. Panda, Y. Elbarawy, A. E. Hassanien, and A. Abraham, "Computational Social Networks: Security and Privacy", Computational Social Networks: Springer London, pp. 3–21, 2012. Abstract
n/a
Salama, M. A., A. E. Hassanien, and K. Revett, "Employment of neural network and rough set in meta-learning", Memetic Computing, vol. 5, no. 3: Springer Berlin Heidelberg, pp. 165–177, 2013. Abstract
n/a
Salama, M. A., A. E. Hassanien, and A. M. Alimi, "Formal concept analysis approach for comparison between Mutagenicity and Carcinogenicity in Cheminformatics", Hybrid Intelligent Systems (HIS), 2013 13th International Conference on: IEEE, pp. 267–272, 2013. Abstract
n/a
Salama, M. A., A. E. Hassanien, and A. A. Fahmy, "Deep belief network for clustering and classification of a continuous data", Signal Processing and Information Technology (ISSPIT), 2010 IEEE International Symposium on: IEEE, pp. 473–477, 2010. Abstract
n/a
Salama, M. A., A. Mostafa, and A. E. Hassanien, "The prediction of virus mutation using neural networks and rough set techniques", . EURASIP J. Bioinformatics and Systems Biology , vol. 10, 2016. AbstractWebsite

Viral evolution remains to be a main obstacle in the effectiveness of antiviral treatments. The ability to predict this evolution will help in the early detection of drug-resistant strains and will potentially facilitate the design of more efficient antiviral treatments. Various tools has been utilized in genome studies to achieve this goal. One of these tools is machine learning, which facilitates the study of structure-activity relationships, secondary and tertiary structure evolution prediction, and sequence error correction. This work proposes a novel machine learning technique for the prediction of the possible point mutations that appear on alignments of primary RNA sequence structure. It predicts the genotype of each nucleotide in the RNA sequence, and proves that a nucleotide in an RNA sequence changes based on the other nucleotides in the sequence. Neural networks technique is utilized in order to predict new strains, then a rough set theory based algorithm is introduced to extract these point mutation patterns. This algorithm is applied on a number of aligned RNA isolates time-series species of the Newcastle virus. Two different data sets from two sources are used in the validation of these techniques. The results show that the accuracy of this technique in predicting the nucleotides in the new generation is as high as 75 %. The mutation rules are visualized for the analysis of the correlation between different nucleotides in the same RNA sequence.

Salama, M. A., A. E. Hassanien, and A. A. Fahmy, "Feature evaluation based fuzzy C-mean classification", Fuzzy Systems (FUZZ), 2011 IEEE International Conference on: IEEE, pp. 2534–2539, 2011. Abstract
n/a
Salama, M. A., A. E. Hassanien, and A. A. Fahmy, "Pattern-based subspace classification model", Nature and Biologically Inspired Computing (NaBIC), 2010 Second World Congress on: IEEE, pp. 357–362, 2010. Abstract
n/a
Salama, M. A., A. E. Hassanien, and K. Revett, "Employment of neural network and rough set in meta-learning", Memetic Computing Springer , 2013. AbstractWebsite

The selection of the optimal ensembles of classifiers in multiple-classifier selection technique is un-decidable in many cases and it is potentially subjected to a trial-and-error search. This paper introduces a quantitative meta-learning approach based on neural network and rough set theory in the selection of the best predictive model. This approach depends directly on the characteristic, meta-features of the input data sets. The employed meta-features are the degree of discreteness and the distribution of the features in the input data set, the fuzziness of these features related to the target class labels and finally the correlation and covariance between the different features. The experimental work that consider these criteria are applied on twenty nine data sets using different classification techniques including support vector machine, decision tables and Bayesian believe model. The measures of these criteria and the best result classification technique are used to build a meta data set. The role of the neural network is to perform a black-box prediction of the optimal, best fitting, classification technique. The role of the rough set theory is the generation of the decision rules that controls this prediction approach. Finally, formal concept analysis is applied for the visualization of the generated rules.

Salama, M. A., O. S. Soliman, I. Maglogiannis, A. E. Hassanien, and A. A. Fahmy, "Rough set-based identification of heart valve diseases using heart sounds", Rough Sets and Intelligent Systems-Professor Zdzisław Pawlak in Memoriam: Springer Berlin Heidelberg, pp. 475–491, 2013. Abstract
n/a
Salama, M. A., A. E. Hassanien, and A. A. Fahmy, "Reducing the influence of normalization on data classification", Computer Information Systems and Industrial Management Applications (CISIM), 2010 International Conference on: IEEE, pp. 609–613, 2010. Abstract
n/a
Salama, M. A., O. S. Soliman, I. Maglogiannis, A. E. Hassanien, and A. A. Fahmy, "Rough set-based identification of heart valve diseases using heart sounds", Rough Sets and Intelligent Systems-Professor Zdzisław Pawlak in Memoriam: Springer Berlin Heidelberg, pp. 475–491, 2013. Abstract
n/a
Tourism