Publications

Export 1250 results:
Sort by: Author Title [ Type  (Desc)] Year
Journal Article
Rizk Masoud, A. E. Hassanien, and Siddhartha Bhattacharyya, "Chaotic Crow Search Algorithm for Fractional Optimization Problems", Applied soft computing , 2018. Abstract

This paper presents a chaotic crow search algorithm (CCSA) for solving fractional optimization problems (FOPs). To refine the global convergence speed and enhance the exploration/exploitation tendencies, the proposed CCSA integrates chaos theory (CT) into the CSA. CT is introduced to tune the parameters of the standard CSA, yielding four variants, with the best chaotic variant being investigated. The performance of the proposed CCSA is validated on twenty well-known fractional benchmark problems. Moreover, it is validated on a fractional economic environmental power dispatch problem by attempting to minimize the ratio of total emissions to total fuel cost. Finally, the proposed CCSA is compared with the standard CSA, particle swarm optimization (PSO), firefly algorithm (FFA), dragonfly algorithm (DA) and grey wolf algorithm (GWA). Additionally, the efficiency of the proposed CCSA is justified using the non parametric Wilcoxon signed-rank test. The experimental results prove that the proposed CCSA outperforms other algorithms in terms of quality and reliability.

Hassanien, A. E., "Classification and feature selection of breast cancer data based on decision tree algorithm", Studies in Informatics and Control, vol. 12, no. 1: INFORMATICS AND CONTROL PUBLICATIONS, pp. 33–40, 2003. Abstract
n/a
Hassanien, A. E., "Classification and feature selection of breast cancer data based on decision tree algorithm", Studies in Informatics and Control, vol. 12, no. 1: INFORMATICS AND CONTROL PUBLICATIONS, pp. 33–40, 2003. Abstract
n/a
Alaa Tharwat, Yasmine S. Moemen, and A. E. Hassanien, "Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines", Journal of Biomedical Informatics, vol. 68, pp. 132-149 , 2017. AbstractWebsite

Measuring toxicity is an important step in drug development. Nevertheless, the current experimental methods used to estimate the drug toxicity are expensive and time-consuming, indicating that they are not suitable for large-scale evaluation of drug toxicity in the early stage of drug development. Hence, there is a high demand to develop computational models that can predict the drug toxicity risks. In this study, we used a dataset that consists of 553 drugs that biotransformed in liver. The toxic effects were calculated for the current data, namely, mutagenic, tumorigenic, irritant and reproductive effect. Each drug is represented by 31 chemical descriptors (features). The proposed model consists of three phases. In the first phase, the most discriminative subset of features is selected using rough set-based methods to reduce the classification time while improving the classification performance. In the second phase, different sampling methods such as Random Under-Sampling, Random Over-Sampling and Synthetic Minority Oversampling Technique (SMOTE), BorderLine SMOTE and Safe Level SMOTE are used to solve the problem of imbalanced dataset. In the third phase, the Support Vector Machines (SVM) classifier is used to classify an unknown drug into toxic or non-toxic. SVM parameters such as the penalty parameter and kernel parameter have a great impact on the classification accuracy of the model. In this paper, Whale Optimization Algorithm (WOA) has been proposed to optimize the parameters of SVM, so that the classification error can be reduced. The experimental results proved that the proposed model achieved high sensitivity to all toxic effects. Overall, the high sensitivity of the WOA + SVM model indicates that it could be used for the prediction of drug toxicity in the early stage of drug development.

Hassanien, A. E., and J. M. H. Ali, "Classification of digital mammography algorithm based on rough set theory", Automatic Control and Computer Sciences, vol. 37, no. 6: ALLERTON PRESS INC 18 WEST 27TH ST, NEW YORK, NY 10001 USA, pp. 64–71, 2003. Abstract
n/a
Alaa Tharwat, Y. S. Moemen, and A. E. Hassanien, "Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines", Journal of Biomedical Informatics, vol. 68: Academic Press, pp. 132–149, 2017. Abstract
n/a
Hafez, A. I., E. T. Al-Shammari, A. E. Hassanien, and A. A. Fahmy, "Community detection in social networks using logic-based probabilistic programming", International Journal of Social Network Mining, vol. 2, no. 2: Inderscience Publishers (IEL), pp. 158–172, 2015. Abstract
n/a
ella and A. I. Hafez, E. T. Al-Shammari, A. H. F. A. A., "Community Detection in Social Networks Using Logic-Based Probabilistic Programming, ", Int. J. of Social Network Mining (IJSNM), , vol. 2, issue 3, 2014.
Hassanien, A. E., and A. Badr, "A comparative study on digital mamography enhancement algorithms based on fuzzy theory", Studies in informatics and control, vol. 12, no. 1: INFORMATICS AND CONTROL PUBLICATIONS, pp. 21–32, 2003. Abstract
n/a
Aziz, A. S. A., E. L. Sanaa, and A. E. Hassanien, "Comparison of classification techniques applied for network intrusion detection and classification", Journal of Applied Logic: Elsevier, 2016. Abstract
n/a
Wu, Z. Q., J. Jiang, and Y. H. Peng, "Computational Intelligence on Medical Imaging with Artificial Neural Networks in", Computational intelligence in medical imaging techniques and applications, 2009. Abstract
n/a
Ahmed M. Anter, and A. E. Hassenian, "Computational intelligence optimization approach based on particle swarm optimizer and neutrosophic set for abdominal CT liver tumor segmentation", Journal of Computational Science, 2018. Abstract

In this paper, an improved segmentation approach for abdominal CT liver tumor based on neutrosophic sets (NS), particle swarm optimization (PSO), and fast fuzzy C-mean algorithm (FFCM) is proposed. To increase the contrast of the CT liver image, the intensity values and high frequencies of the original images were removed and adjusted firstly using median filter approach. It is followed by transforming the abdominal CT image to NS domain, which is described using three subsets namely; percentage of truth T, percentage of falsity F, and percentage of indeterminacy I. The entropy is used to evaluate indeterminacy in NS domain. Then, the NS image is passed to optimized FFCM using PSO to enhance, optimize clusters results and segment liver from abdominal CT. Then, these segmented livers passed to PSOFCM technique to cluster and segment tumors. The experimental results obtained based on the analysis of variance (ANOVA) technique, Jaccard Index and Dice Coefficient measures show that, the overall accuracy offered by neutrosophic sets is accurate, less time consuming and less sensitive to noise and performs well on non-uniform CT images.

Hassanien, A. E., E. T. Al-Shammari, and N. I. Ghali, "Computational intelligence techniques in bioinformatics", Computational biology and chemistry, vol. 47: Elsevier, pp. 37–47, 2013. Abstract
n/a
Hassanien, A. E., E. T. Al-Shammari, and N. I. Ghali, "Computational intelligence techniques in bioinformatics", Computational biology and chemistry, vol. 47: Elsevier, pp. 37–47, 2013. Abstract
n/a
Elbedwehy, M. N., M. E. Ghoneim, A. E. Hassanien, and A. T. Azar, "A computational knowledge representation model for cognitive computers", Neural Computing and Application (Springer), vol. In press, 2014.
Elbedwehy, M. N., M. E. Ghoneim, A. E. Hassanien, and A. T. Azar, "A computational knowledge representation model for cognitive computers", Neural Computing and Application , vol. June 2014, 2014. AbstractWebsite

The accumulating data are easy to store but the ability of understanding and using it does not keep track with its growth. So researches focus on the nature of knowledge processing in the mind. This paper proposes a semantic model (CKRMCC) based on cognitive aspects that enables cognitive computer to process the knowledge as the human mind and find a suitable representation of that knowledge. In cognitive computer, knowledge processing passes through three major stages: knowledge acquisition and encoding, knowledge representation, and knowledge inference and validation. The core of CKRMCC is knowledge representation, which in turn proceeds through four phases: prototype formation phase, discrimination phase, generalization phase, and algorithm development phase. Each of those phases is mathematically formulated using the notions of real-time process algebra. The performance efficiency of CKRMCC is evaluated using some datasets from the well-known UCI repository of machine learning datasets. The acquired datasets are divided into training and testing data that are encoded using concept matrix. Consequently, in the knowledge representation stage, a set of symbolic rule is derived to establish a suitable representation for the training datasets. This representation will be available in a usable form when it is needed in the future. The inference stage uses the rule set to obtain the classes of the encoded testing datasets. Finally, knowledge validation phase is validating and verifying the results of applying the rule set on testing datasets. The performances are compared with classification and regression tree and support vector machine and prove that CKRMCC has an efficient performance in representing the knowledge using symbolic rules.

Elbedwehy, M. N., M. E. Ghoneim, A. E. Hassanien, and A. T. Azar, "A computational knowledge representation model for cognitive computers", Neural Computing and Applications, vol. 25, no. 7-8: Springer London, pp. 1517–1534, 2014. Abstract
n/a
Hassanien, A. - E., Computational Social Networks Analysis, : Computer Communications and Networks Series-Springer, 2010. Abstract
n/a
Ashour, A. S., S. Samanta, N. Dey, N. Kausar, W. B. Abdessalemkaraa, and A. E. Hassanien, "Computed Tomography Image Enhancement Using Cuckoo Search: A Log Transform Based Approach", Journal of Signal and Information Processing, vol. 6, pp. 244-257, 2015. Abstractjsip_2015083113193757_1.pdfWebsite

Medical image enhancement is an essential process for superior disease diagnosis as well as for
detection of pathological lesion accurately. Computed Tomography (CT) is considered a vital medical
imaging modality to evaluate numerous diseases such as tumors and vascular lesions. However,
speckle noise corrupts the CT images and makes the clinical data analysis ambiguous.
Therefore, for accurate diagnosis, medical image enhancement is a must for noise removal and
sharp/clear images. In this work, a medical image enhancement algorithm has been proposed using
log transform in an optimization framework. In order to achieve optimization, a well-known
meta-heuristic algorithm, namely: Cuckoo search (CS) algorithm is used to determine the optimal
parameter settings for log transform. The performance of the proposed technique is studied on a
low contrast CT image dataset. Besides this, the results clearly show that the CS based approach
has superior convergence and fitness values compared to PSO as the CS converge faster that
proves the efficacy of the CS based technique. Finally, Image Quality Analysis (IQA) justifies the robustness >
of the proposed enhancement technique.

Ashour, A. S., S. Samanta, N. Dey, N. Kausar, W. B. Abdessalemkaraa, A. E. Hassanien, and others, "Computed tomography image enhancement using cuckoo search: a log transform based approach", Journal of Signal and Information Processing, vol. 6, no. 03: Scientific Research Publishing, pp. 244, 2015. Abstract
n/a
Hassanien, A. E., "A Copyright Protection using Watermarking Algorithm", Informatica, vol. 17 , issue 2, pp. 187-198, 2006. AbstractWebsite

In this paper, a digital watermarking algorithm for copyright protection based on the concept of embed digital watermark and modifying frequency coefficients in discrete wavelet transform (DWT) domain is presented. We embed the watermark into the detail wavelet coefficients of the original image with the use of a key. This key is randomly generated and is used to select the exact locations in the wavelet domain in which to embed the watermark. The corresponding watermark detection algorithm is presented. A new metric that measure the objective quality of the image based on the detected watermark bit is introduced, which the original unmarked image is not required for watermark extraction. The performance of the proposed watermarking algorithm is robust to variety of signal distortions, such a JPEG, image cropping, geometric transformations and noises.

Hassanien, A. E., "A copyright protection using watermarking algorithm", Informatica, vol. 17, no. 2: Institute of Mathematics and Informatics, pp. 187–198, 2006. Abstract
n/a
Mostafa, A., A. Fouad, M. A. Fattah, A. E. Hassanien, H. Hefny, S. Y. Zhu, and G. Schaefer, "CT liver segmentation using artificial bee colony optimisation", Procedia Computer Science, vol. 60: Elsevier, pp. 1622–1630, 2015. Abstract
n/a
El-Bendary, N., Esraa Elhariri, M. Hazman, S. M. Saleh, and A. E. Hassanien, "Cultivation-time Recommender System Based on Climatic Conditions for Newly Reclaimed Lands in Egypt", Procedia Computer Science, vol. Volume 96, , pp. Pages 110-119, 2016. AbstractWebsite

This research proposes cultivation-time recommender system for predicting the best sowing dates for winter cereal crops in the newly reclaimed lands in Farafra Oasis, The Egyptian Western Desert. The main goal of the proposed system is to support the best utilization of farm resources. In this research, predicting the best sowing dates for the aimed crops is based on weather conditions prediction along with calculating the seasonal accumulative growing degree days (GDD) fulfillment duration for each crop. Various Machine Learning (ML) regression algorithms have been used for predicting the daily minimum and maximum air temperature based on historical weather conditions data for twenty-five growing seasons (1990/91 to 2014/15). Experimental results showed that using the M5P and IBk ML regression algorithms have outperformed the other implemented regression algorithms for predicting the daily minimum and maximum air temperature based on historical weather conditions data. That has been measured based on the calculated mean absolute error (MAE). Also, obtained experimental results obviously indicated that the best cultivation-time prediction by the proposed recommender system has been achieved by the M5P algorithm, based on the seasonal accumulative GDD fulfillment duration, for the coming five growing seasons (2016/17 to 2019/20).

El-Bendary, N., Esraa Elhariri, M. Hazman, S. M. Saleh, and A. E. Hassanien, "Cultivation-time recommender system based on climatic conditions for newly reclaimed lands in Egypt", Procedia Computer Science, vol. 96: Elsevier, pp. 110–119, 2016. Abstract
n/a