Publications

Export 1250 results:
Sort by: Author Title Type [ Year  (Desc)]
2008
El-Hosseini, M. A., A. E. Hassanien, A. Abraham, and H. Al-Qaheri, "Cultural-Based Genetic Algorithm: Design and Real World Applications. ", Eighth International Conference on Intelligent Systems Design and Applications, ISDA 2008, Kaohsiung, Taiwan, pp.488-493 , 26-28 November, 2008. Abstract

Due to their excellent performance in solving combinatorial optimization problems, metaheuristics algorithms such as Genetic Algorithms GA [35], [18], [5], Simulated Annealing SA [34], [13] and Tabu Search TS make up another class of search methods that has been adopted to efficiently solve dynamic optimization problem. Most of these methods are confined to the population space and in addition the solutions of nonlinear problems become quite difficult especially when they are heavily constrained. They do not make full use of the historical information and lack prediction about the search space. Besides the knowledge that individuals inherited "genetic code" from their ancestors, there is another component called Culture. In this paper, a novel culture-based GA algorithm is proposed and is tested against multidimensional and highly nonlinear real world applications.

Xiao, K., S. H. Ho, and A. E. Hassanien, "Aboul Ella Hassanien: Automatic Unsupervised Segmentation Methods for MRI Based on Modified Fuzzy C-Means", Fundamenta Informaticae, vol. 87, issue 3-4, pp. 465-481, 2008. Website
Hassanien, A. E., Applications of Computational Intelligence in Biology, , Germany, Studies in Computational Intelligence, Springer Vol. 122 , 2008. AbstractWebsite

The purpose of this book is to provide a medium for an exchange of expertise and concerns. In order to achieve the goal, the editors have solicited contributions from both computational intelligence as well as biology researchers. They have collected contributions from the CI community describing powerful new methodologies that could, or currently are, utilized for biology-oriented applications. On the other hand, the book also contains chapters devoted to open problems in biology that are in need of strong computational techniques, so the CI community can find a brand new and potentially intriguing spectrum of applications.

Hassanien, A. E., "Clustering Time Series Data: An Evolutionary Approach ", Foundations of Computational Intelligence, Volume 206, pp.193-207: Springer , 2008. Abstract

Time series clustering is an important topic, particularly for similarity search amongst long time series such as those arising in bioinformatics, in marketing research, software engineering and management. This chapter discusses the state-of-the-art methodology for some mining time series databases and presents a new evolutionary algorithm for times series clustering an input time series data set. The data mining methods presented include techniques for efficient segmentation, indexing, and clustering time series.

Hassanien, A. E., Computational Intelligence in Biomedicine and Bioinformatics, , Germany, Studies in Computational Intelligence, Springer Vol. 151 , 2008. AbstractWebsite

The purpose of this book is to provide an overview of powerful state-of-the-art methodologies that are currently utilized for biomedicine and/ or bioinformatics-oriented applications, so that researchers working in those fields could learn of new methods to help them tackle their problems. On the other hand, the CI community will find this book useful by discovering a new and intriguing area of applications. In order to help fill the gap between the scientists on both sides of this spectrum, the editors have solicited contributions from researchers actively applying computational intelligence techniques to important problems in biomedicine and bioinformatics.

Hassanien, A. E., Computational Intelligence in Multimedia Processing: Recent Advances, , USA, Studies in Computational Intelligence, Springer Vol. 96 , 2008. AbstractWebsite

For the last decades Multimedia processing has emerged as an important technology to generate content based on images, video, audio, graphics, and text. Furthermore, the recent new development represented by High Definition Multimedia content and Interactive television will generate a huge volume of data and important computing problems connected with the creation, processing and management of Multimedia content. "Computational Intelligence in Multimedia Processing: Recent Advances" is a compilation of the latest trends and developments in the field of computational intelligence in multimedia processing. This edited book presents a large number of interesting applications to intelligent multimedia processing of various Computational Intelligence techniques, such as rough sets, Neural Networks; Fuzzy Logic; Evolutionary Computing; Artificial Immune Systems; Swarm Intelligence; Reinforcement Learning and evolutionary computation.

Hassanien, A. E., "Computational Intelligence in Solving Bioinformatics Problems: Reviews, Perspectives Computational Intelligence in Solving Bioinformatics Problems: Reviews, Perspectives, and Challenges", Computational Intelligence in Biomedicine and Bioinformatics , London, Studies in Computational Intelligence,Springer, Volume 151/2008, 3-47, 2008. Abstract

This chapter presents a broad overview of Computational Intelligence (CI) techniques including Artificial Neural Networks (ANN), Particle Swarm Optimization (PSO), Genetic Algorithms (GA), Fuzzy Sets (FS), and Rough Sets (RS). We review a number of applications of computational intelligence to problems in bioinformatics and computational biology, including gene expression, gene selection, cancer classification, protein function prediction, multiple sequence alignment, and DNA fragment assembly. We discuss some representative methods to provide inspiring examples to illustrate how CI could be applied to solve bioinformatic problems and how bioinformatics could be analyzed, processed, and characterized by computational intelligence. Challenges to be addressed and future directions of research are presented. An extensive bibliography is also included.

Hassanien, A. E., Emerging Markets and E-Commerce in Developing Economies, , USA, IGI Global USA, 2008. AbstractWebsite

High Internet penetration in regions such as North America, Australia, and Europe, has proven the World Wide Web as an important medium for e-commerce transaction. Despite the soaring adoption statistics for those already developed societies, diffusion rates still remain low for the less developed countries, with e-commerce in its infancy.Emerging Markets and E-Commerce in Developing Economies enhances understanding of e-commerce models and practices in less developed countries, and extends the growing literature on e-commerce. An essential addition to worldwide library collections in technology, commerce, social sciences, and related fields, this essential contribution expands the body of knowledge in the field with relevant theoretical foundations, methodologies, and frameworks, to the benefit of the international academic, research, governmental, and industrial communities.

Hassanien, A. E., Rough Computing: Theories, Technologies, and Applications, , USA, IGI Global USA, 2008. AbstractWebsite

Rough set theory is a new soft computing tool which deals with vagueness and uncertainty. It has attracted the attention of researchers and practitioners worldwide, and has been successfully applied to many fields such as knowledge discovery, decision support, pattern recognition, and machine learning. Rough Computing: Theories, Technologies and Applications offers the most comprehensive coverage of key rough computing research, surveying a full range of topics from granular computing to pansystems theory. With its unique coverage of the defining issues of the field, this commanding research collection provides libraries with a single, authoritative reference to this highly advanced technological topic.

Hassanien, A. E., and A. Abraham, "Rough Morphology Hybrid Approach for Mammography Image Classification and Prediction", International Journal of Computational Intelligence and Applications , vol. 7, issue 1, pp. 17-42 , 2008. AbstractWebsite

The objective of this research is to illustrate how rough sets can be successfully integrated with mathematical morphology and provide a more effective hybrid approach to resolve medical imaging problems. Hybridization of rough sets and mathematical morphology techniques has been applied to depict their ability to improve the classification of breast cancer images into two outcomes: malignant and benign cancer. Algorithms based on mathematical morphology are first applied to enhance the contrast of the whole original image; to extract the region of interest (ROI) and to enhance the edges surrounding that region. Then, features are extracted characterizing the underlying texture of the ROI by using the gray-level co-occurrence matrix. The rough set approach to attribute reduction and rule generation is further presented. Finally, rough morphology is designed for discrimination of different ROI to test whether they represent malignant cancer or benign cancer. To evaluate performance of the presented rough morphology approach, we tested different mammogram images. The experimental results illustrate that the overall performance in locating optimal orientation offered by the proposed approach is high compared with other hybrid systems such as rough-neural and rough-fuzzy systems.

Hassanien, A. E., M. E. Abdelhafez, and H. S. Own, "Rough Sets Data Analysis in Knowledge Discovery: A Case of Kuwaiti Diabetic Children Patients", Advances in Fuzzy Systems,, vol. 2008, issue 1, pp. 13, 2008. AbstractWebsite

The main goal of this study is to investigate the relationship between psychosocial variables and diabetic children patients and to obtain a classifier function with which it was possible to classify the patients on the basis of assessed adherence level. The rough set theory is used to identify the most important attributes and to induce decision rules from 302 samples of Kuwaiti diabetic children patients aged 7–13 years old. To increase the efficiency of the classification process, rough sets with Boolean reasoning discretization algorithm is introduced to discretize the data, then the rough set reduction technique is applied to find all reducts of the data which contains the minimal subset of attributes that are associated with a class label for classification. Finally, the rough sets dependency rules are generated directly from all generated reducts. Rough confusion matrix is used to evaluate the performance of the predicted reducts and classes. A comparison between the obtained results using rough sets with decision tree, neural networks, and statistical discriminate analysis classifier algorithms has been made. Rough sets show a higher overall accuracy rates and generate more compact rules.

Own, H. S., and A. E. Hassanien, "Rough Wavelet Hybrid Image Classification Scheme", Journal of Convergence Information Technology, vol. 3, issue 4, pp. 65-75, 2008. AbstractWebsite

This paper introduces a new computer-aided classification system for detection of prostate cancer in
Transrectal Ultrasound images (TRUS). To increase the efficiency of the computer aided classification
process, an intensity adjustment process is applied first, based on the Pulse Coupled Neural Network
(PCNN) with a median filter. This is followed by applying a PCNN-based segmentation algorithm to
detect the boundary of the prostate image. Combining the adjustment and segmentation enable to eliminate PCNN sensitivity to the setting of the various PCNN parameters whose optimal selection can be difficult and can vary even for the same problem. Then, wavelet based features have been extracted and
normalized, followed by application of a rough set analysis to discover the dependency between the
attributes and to generate a set of reduct that contains a minimal number of attributes. Finally, a rough
confusion matrix is designed that contain information about actual and predicted classifications done by a
classification system. Experimental results show that the introduced system is very successful and has high detection accuracy

Smolinski, T. G., M. G. Milanova, and A. - E. Hassanien, Applications of Computational Intelligence in Biology: Current Trends and Open Problems, : Springer, 2008. Abstract
n/a
Smolinski, T. G., M. G. Milanova, and A. - E. Hassanien, Applications of Computational Intelligence in Biology: Current Trends and Open Problems, : Springer, 2008. Abstract
n/a
Xiao, K., S. H. Ho, and others, "Automatic unsupervised segmentation methods for mri based on modified fuzzy c-means", Fundamenta Informaticae, vol. 87, no. 3-4: IOS Press, pp. 465–481, 2008. Abstract
n/a
Xiao, K., S. H. Ho, and others, "Automatic unsupervised segmentation methods for mri based on modified fuzzy c-means", Fundamenta Informaticae, vol. 87, no. 3-4: IOS Press, pp. 465–481, 2008. Abstract
n/a
Hassanien, A. - E., A. Abraham, J. Kacprzyk, and J. F. Peters, "Computational intelligence in multimedia processing: foundation and trends", Computational Intelligence in Multimedia Processing: Recent Advances: Springer Berlin Heidelberg, pp. 3–49, 2008. Abstract
n/a
Hassanien, A. - E., A. Abraham, J. Kacprzyk, and J. F. Peters, "Computational intelligence in multimedia processing: foundation and trends", Computational Intelligence in Multimedia Processing: Recent Advances: Springer Berlin Heidelberg, pp. 3–49, 2008. Abstract
n/a
Hassanien, A. - E., A. Abraham, J. Kacprzyk, and J. F. Peters, "Computational intelligence in multimedia processing: foundation and trends", Computational Intelligence in Multimedia Processing: Recent Advances: Springer Berlin Heidelberg, pp. 3–49, 2008. Abstract
n/a
Hassanien, A. - E., and A. Abraham, Computational intelligence in multimedia processing: recent advances, : Springer, 2008. Abstract
n/a
Hassanien, A. - E., and A. Abraham, Computational intelligence in multimedia processing: recent advances, : Springer, 2008. Abstract
n/a
Hassanien, A. - E., M. G. Milanova, T. G. Smolinski, and A. Abraham, "Computational intelligence in solving bioinformatics problems: Reviews, perspectives, and challenges", Computational Intelligence in Biomedicine and Bioinformatics: Springer Berlin Heidelberg, pp. 3–47, 2008. Abstract
n/a
Hassanien, A. - E., M. G. Milanova, T. G. Smolinski, and A. Abraham, "Computational intelligence in solving bioinformatics problems: Reviews, perspectives, and challenges", Computational Intelligence in Biomedicine and Bioinformatics: Springer Berlin Heidelberg, pp. 3–47, 2008. Abstract
n/a
El-Hosseini, M. A., A. E. Hassanien, A. Abraham, and H. Al-Qaheri, "Cultural-Based Genetic Algorithm: Design and Real World Applications", Intelligent Systems Design and Applications, 2008. ISDA'08. Eighth International Conference on, vol. 3: IEEE, pp. 488–493, 2008. Abstract
n/a
Al-Qaheri, H., A. E. Hassanien, and A. Abraham, "Discovering stock price prediction rules using rough sets", Neural Network World, vol. 18, no. 3: Institute of Computer Science, pp. 181, 2008. Abstract
n/a
Tourism