Export 1250 results:
Sort by: Author Title Type [ Year  (Desc)]
Alaa Tharwat, T. Gaber, Abdelhameed Ibrahim, and A. E. Hassanien, "Linear Discriminant Analysis: A Detailed Tutorial", AI Communications, IOS press, 2017. linear_discreminate_analysisp_detailed_tutorails.pdf
Mostafa, A., A. E. Hassanien, and H. Hefney, "Liver segmentation in MRI images based on whale optimization algorithm,", Multimedia Tools and Applications, Springer, 2017.
abd elaziz, M., and A. E. Hassanien, "Modified cuckoo search algorithm with rough sets for feature selection,", Neural Computing and Applications,, pp. pp.1-10, 2017, 2017. AbstractWebsite

In this paper, a modified cuckoo search algorithm with rough sets is presented to deal with high dimensionality data through feature selection. The modified cuckoo search algorithm imitates the obligate brood parasitic behavior of some cuckoo species in combination with the Lévy flight behavior of some birds. The modified cuckoo search uses the rough sets theory to build the fitness function that takes the number of features in reduct set and the classification quality into account. The proposed algorithm is tested and validated benchmark on several benchmark datasets drawn from the UCI repository and using different evaluation criteria as well as a further analysis is carried out by means of the Analysis of Variance test. In addition, the proposed algorithm is experimentally compared with the existing algorithms on discrete datasets. Finally, two learning algorithms, namely K-nearest neighbors and support vector machines are used to evaluate the performance of the proposed approach. The results show that the proposed algorithm can significantly improve the classification performance.

Hassanien, A. E., M. M. Fouad, A. A. Manaf, M. Zamani, R. Ahmad, and J. Kacprzyk, Multimedia Forensics and Security: Foundations, Innovations, and Applications, , Germany , Springer, 2017. AbstractWebsite


Sayed, G. I., and A. E. Hassanien, "Neuro-Imaging Machine Learning Techniques for Alzheimer's Disease Diagnosis ", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

Alzheimer's disease (AD) is considered one of the most common dementia's forms affecting senior's age staring from 65 and over. The standard method for identifying AD are usually based on behavioral, neuropsychological and cognitive tests and sometimes followed by a brain scan. Advanced medical imagining modalities such as MRI and pattern recognition techniques are became good tools for predicting AD. In this chapter, an automatic AD diagnosis system from MRI images based on using machine learning tools is proposed. A bench mark dataset is used to evaluate the performance of the proposed system. The adopted dataset consists of 20 patients for each diagnosis case including cognitive impairment, Alzheimer's disease and normal. Several evaluation measurements are used to evaluate the robustness of the proposed diagnosis system. The experimental results reveal the good performance of the proposed system.

Rizk-Allah, R. M., and A. E. Hassanien, "New binary bat algorithm for solving 0–1 knapsack problem", Complex & Intelligent Systems, 2017. Website
Ismael, G., A. E. Hassanien, and A. Darwish, "new chaotic whale optimization algorithm for features selection", Journal of Classification (In review), vol. Springer, 2017.
Tharwt, A., and A. E. Hassanien, "Particle Swarm Optimization: A Tutorial", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

Optimization algorithms are necessary to solve many problems such as parameter tuning. Particle Swarm Optimization (PSO) is one of these optimization algorithms. The aim of PSO is to search for the optimal solution in the search space. This paper highlights the basic background needed to understand and implement the PSO algorithm. This paper starts with basic definitions of the PSO algorithm and how the particles are moved in the search space to find the optimal or near optimal solution. Moreover, a numerical example is illustrated to show how the particles are moved in a convex optimization problem. Another numerical example is illustrated to show how the PSO trapped in a local minima problem. Two experiments are conducted to show how the PSO searches for the optimal parameters in one-dimensional and two-dimensional spaces to solve machine learning problems.

Elghamrawy, S., and Aboul Ella Hassa, "A Partitioning Framework for Cassandra NoSQL Database using Rendezvous Hashing", Journal of Supercomputing (SUPE), Springer , vol. pp 1–22, 2017. AbstractWebsite

Due to the gradual expansion in data volume used in social networks and cloud computing, the term “Big data” has appeared with its challenges to store the immense datasets. Many tools and algorithms appeared to handle the challenges of storing big data. NoSQL databases, such as Cassandra and MongoDB, are designed with a novel data management system that can handle and process huge volumes of data. Partitioning data in NoSQL databases is considered one of the critical challenges in database design. In this paper, a MapReduce Rendezvous Hashing-Based Virtual Hierarchies (MR-RHVH) framework is proposed for scalable partitioning of Cassandra NoSQL database. The MapReduce framework is used to implement MR-RHVH on Cassandra to enhance its performance in highly distributed environments. MR-RHVH distributes the nodes to rendezvous regions based on a proposed Adopted Virtual Hierarchies strategy. Each region is responsible for a set of nodes. In addition, a proposed bloom filter evaluator is used to ensure the accurate allocation of keys to nodes in each region. Moreover, a number of experiments were performed to evaluate the performance of MR-RHVH framework, using YCSB for database benchmarking. The results show high scalability rate and less time consuming for MR-RHVH framework over different recent systems.

Oliva, D., M. abd elaziz, and A. E. Hassanien, "Photovoltaic cells design using an improved chaotic whale optimization algorithm", Applied Energy, vol. 200, pp. 141–154, 2017. AbstractWebsite

The using of solar energy has been increased since it is a clean source of energy. In this way, the design of photovoltaic cells has attracted the attention of researchers over the world. There are two main problems in this field: having a useful model to characterize the solar cells and the absence of data about photovoltaic cells. This situation even affects the performance of the photovoltaic modules (panels). The characteristics of the current vs. voltage are used to describe the behavior of solar cells. Considering such values, the design problem involves the solution of the complex non-linear and multi-modal objective functions. Different algorithms have been proposed to identify the parameters of the photovoltaic cells and panels. Most of them commonly fail in finding the optimal solutions. This paper proposes the Chaotic Whale Optimization Algorithm (CWOA) for the parameters estimation of solar cells. The main advantage of the proposed approach is using the chaotic maps to compute and automatically adapt the internal parameters of the optimization algorithm. This situation is beneficial in complex problems, because along the iterative process, the proposed algorithm improves their capabilities to search for the best solution. The modified method is able to optimize complex and multimodal objective functions. For example, the function for the estimation of parameters of solar cells. To illustrate the capabilities of the proposed algorithm in the solar cell design, it is compared with other optimization methods over different datasets. Moreover, the experimental results support the improved performance of the proposed approach regarding accuracy and robustness.

Farouk, A., M. Elhoseny, and A. E. Hassanien, "A Proposed Architecture for Key Management Schema in Centralized Quantum Network", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

Most existing realizations of quantum key distribution (QKD) are point-to-point systems with one source transferring to only one destination. Growth of these single-receiver systems has now achieved a reasonably sophisticated point. However, many communication systems operate in a point-to-multi-point (Multicast) configuration rather than in point-to-point mode, so it is crucial to demonstrate compatibility with this type of network in order to maximize the application range for QKD. Therefore, this chapter proposed architecture for implementing a multicast quantum key distribution Schema. The proposed architecture is designed as a Multicast Centralized Key Management Scheme Using Quantum Key Distribution and Classical Symmetric Encryption. In this architecture, a secured key generation and distribution solution has been proposed for a single host sending to two or more (N) receivers using centralized Quantum Multicast Key Distribution Centre and classical symmetric encryption.

Hassan, G., and A. E. Hassanien, "A Review of Vessel Segmentation Methodologies and Algorithms: Comprehensive Review, ", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI USA, 2017. Abstract

“Prevention is better than cure”, true statement which all of us neglect. One of the most reasons which cause speedy recovery from any diseases is to discover it in advanced stages. From here come the importance of computer systems which preserve time and achieve accurate results in knowing the diseases and its first symptoms .One of these systems is retinal image analysis system which considered as a key role and the first step of Computer Aided Diagnosis Systems (CAD). In addition to monitor the patient health status under different treatment methods to ensure How it effects on the disease.. In this chapter the authors examine most of approaches that are used for vessel segmentation for retinal images, and a review of techniques is presented comparing between their quality and accessibility, analyzing and catgrizing them. This chapter gives a description and highlights the key points and the performance measures of each one.

Elhoseny, M., A. Farouk, A. Shehab, and A. E. Hassanien, "Secure Image Processing and Transmission Schema in Cluster-Based Wireless Sensor Network", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

WSN as a new category of computer-based computing platforms and network structures is showing new applications in different areas such as environmental monitoring, health care and military applications. Although there are a lot of secure image processing schemas designed for image transmission over a network, the limited resources and the dynamic environment make it invisible to be used with Wireless Sensor Networks (WSNs). In addition, the current secure data transmission schemas in WSN are concentrated on the text data and are not applicable for image transmission's applications. Furthermore, secure image transmission is a big challenging issue in WSNs especially for the application that uses image as its main data such as military applications. The reason why is because the limited resources of the sensor nodes which are usually deployed in unattended environments. This chapter introduces a secure image processing and transmission schema in WSN using Elliptic Curve Cryptography (ECC) and Homomorphic Encryption (HE).

Reham Gharbia, and A. E. Hassanien, "Swarm Intelligence Based on Remote Sensing Image Fusion: Comparison between the Particle Swarm Optimization and the Flower Pollination Algorithm ", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

This chapter presents a remote sensing image fusion based on swarm intelligence. Image fusion is combining multi-sensor images in a single image that has most informative. Remote sensing image fusion is an effective way to extract a large volume of data from multisource images. However, traditional image fusion approaches cannot meet the requirements of applications because they can lose spatial information or distort spectral characteristics. The core of the image fusion is image fusion rules. The main challenge is getting suitable weight of fusion rule. This chapter proposes swarm intelligence to optimize the image fusion rule. Swarm intelligence algorithms are a family of global optimizers inspired by swarm phenomena in nature and have shown better performance. In this chapter, two remote sensing image fusion based on swarm intelligence algorithms, Particle Swarm Optimization (PSO) and flower pollination algorithm are presented to get an adaptive image fusion rule and comparative between them.

Sara Ahmed, T. Gaber, and A. E. Hassanien, "Telemetry Data Mining Techniques, Applications, and Challenges", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

The most recent rise of telemetry is around the use of Radio-telemetry technology for tracking the traces of moving objects. Initially, the radio telemetry was first used in the 1960s for studying the behavior and ecology of wild animals. Nowadays, there's a wide spectrum application of can benefits from radio telemetry technology with tracking methods, such as path discovery, location prediction, movement behavior analysis, and so on. Accordingly, rapid advance of telemetry tracking system boosts the generation of large-scale trajectory data of tracking traces of moving objects. In this study, we survey various applications of trajectory data mining and review an extensive collection of existing trajectory data mining techniques to be used as a guideline for designing future trajectory data mining solutions.

HASSAN, A. H. M. E. D., and A. E. Hassanien, "Two-Class Support Vector Machine with New Kernel Function Based on Paths of Features for Predicting Chemical Activity", Information Sciences, 2017. AbstractWebsite

Information and computer science fields such as machine learning and graph theory are implemented in chemoinformatics to discover the properties of chemical compounds. This paper presents a new algorithm based on the two-class support vector machine (SVM) model, which has new kernel functions for paths of features, enabling the prediction of chemical compound activity. Initially, we extract all paths of features (star subgraphs) with certain lengths, and we encode them depending on their structure in the graphs. Then, we use these codes to construct two relationship matrices between those paths. These matrices contain common and different sub-paths between paths of stars. The number of sub-paths/paths for each compound is passed to the proposed kernel functions in the two-class SVM to predict the activity of chemical compounds. The relationship matrices created by the proposed algorithm help to reduce the number of features, which improves prediction accuracy. We apply the proposed algorithm with and without feature selection using two benchmark datasets, specifically, the monoamine oxidase (MAO) dataset and the AIDS antiviral screen database of active compound dataset, which have 68 and 2000 chemical compounds, respectively. We perform comparative experiments for the proposed kernel functions and many other two-class SVM prediction methods, and the results before feature selection show prediction accuracies of 94% and 99.5% for MAO and AIDS, respectively. After selection, the prediction accuracies are 96% and 99.5% for MAO and AIDS, respectively.

abd elaziz, M., A. A. Ewees, and A. E. Hassanien, "Whale Optimization Algorithm and Moth-Flame Optimization for Multilevel Thresholding Image Segmentation", Expert Systems with Applications, 2017. AbstractWebsite

Determining the optimal thresholding for image segmentation has got more attention in recent years since it has many applications. There are several methods used to find the optimal thresholding values such as Otsu and Kapur based methods. These methods are suitable for bi-level thresholding case and they can be easily extended to the multilevel case, however, the process of determining the optimal thresholds in the case of multilevel thresholding is time-consuming. To avoid this problem, this paper examines the ability of two nature inspired algorithms namely: Whale Optimization Algorithm (WOA) and Moth-Flame Optimization (MFO) to determine the optimal multilevel thresholding for image segmentation. The MFO algorithm is inspired from the natural behavior of moths which have a special navigation style at night since they fly using the moonlight, whereas, the WOA algorithm emulates the natural cooperative behaviors of whales. The candidate solutions in the adapted algorithms were created using the image histogram, and then they were updated based on the characteristics of each algorithm. The solutions are assessed using the Otsu’s fitness function during the optimization operation. The performance of the proposed algorithms has been evaluated using several of benchmark images and has been compared with five different swarm algorithms. The results have been analyzed based on the best fitness values, PSNR, and SSIM measures, as well as time complexity and the ANOVA test. The experimental results showed that the proposed methods outperformed the other swarm algorithms; in addition, the MFO showed better results than WOA, as well as provided a good balance between exploration and exploitation in all images at small and high threshold numbers.

Khairy, M., Alaa Tharwat, T. Gaber, and A. E. Hassanien, "A wheelchair control system using the human machine interaction: Single-modal and Multi-modal approaches", ournal of Intelligent Systems (JISYS), vol. In press, 2017.
Mouhamed, M. R., A. Darwish, and A. E. Hassanien, "2D and 3D Intelligent Watermarking", Handbook of Research on Machine Learning Innovations and Trends: IGI Global, pp. 652–669, 2017. Abstract
Soliman, M. M., and A. E. Hassanien, "3D Watermarking Approach Using Particle Swarm Optimization Algorithm", Handbook of Research on Machine Learning Innovations and Trends: IGI Global, pp. 582–613, 2017. Abstract
Sahlol, A. T., and A. E. Hassanien, "Bio-Inspired Optimization Algorithms for Arabic Handwritten Characters", Handbook of Research on Machine Learning Innovations and Trends: IGI Global, pp. 897–914, 2017. Abstract
Alaa Tharwat, Y. S. Moemen, and A. E. Hassanien, "Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines", Journal of Biomedical Informatics, vol. 68: Academic Press, pp. 132–149, 2017. Abstract
Aziz, A. S. A., M. M. Fouad, and A. E. Hassanien, "Cloud Computing Forensic Analysis: Trends and Challenges", Multimedia Forensics and Security: Springer International Publishing, pp. 3–23, 2017. Abstract
Abdelhameed Ibrahim, T. Horiuchi, S. Tominaga, and A. E. Hassanien, "Color Invariant Representation and Applications", Handbook of Research on Machine Learning Innovations and Trends: IGI Global, pp. 1041–1061, 2017. Abstract
Chakraborty, S., S. Chatterjee, N. Dey, A. S. Ashour, and A. E. Hassanien, "Comparative Approach Between Singular Value Decomposition and Randomized Singular Value Decomposition-based Watermarking", Intelligent Techniques in Signal Processing for Multimedia Security: Springer International Publishing, pp. 133–149, 2017. Abstract