Publications

Export 1248 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
Reham Gharbia, S. A. Ahmed, and A. E. Hassanien, "Remote Sensing Image Registration Based on Particle Swarm Optimization and Mutual Information", Information Systems Design and Intelligent Applications: Springer India, pp. 399–408, 2015. Abstract
n/a
Reham Gharbia, A. T. Azar, A. E. Baz, and A. E. Hassanien, "Image fusion techniques in remote sensing", arXiv preprint arXiv:1403.5473, 2014. Abstract
n/a
Reham Gharbia, Ali Hassan El Baz, A. E. Hassanien, and M. F. Tolba, "Remote sensing image fusion approach based on Brovey and wavelets transforms", Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing and Applications IBICA 2014: Springer International Publishing, pp. 311–321, 2014. Abstract
n/a
Reham Gharbia, and A. E. Hassanien, "Swarm Intelligence Based on Remote Sensing Image Fusion: Comparison between the Particle Swarm Optimization and the Flower Pollination Algorithm ", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

This chapter presents a remote sensing image fusion based on swarm intelligence. Image fusion is combining multi-sensor images in a single image that has most informative. Remote sensing image fusion is an effective way to extract a large volume of data from multisource images. However, traditional image fusion approaches cannot meet the requirements of applications because they can lose spatial information or distort spectral characteristics. The core of the image fusion is image fusion rules. The main challenge is getting suitable weight of fusion rule. This chapter proposes swarm intelligence to optimize the image fusion rule. Swarm intelligence algorithms are a family of global optimizers inspired by swarm phenomena in nature and have shown better performance. In this chapter, two remote sensing image fusion based on swarm intelligence algorithms, Particle Swarm Optimization (PSO) and flower pollination algorithm are presented to get an adaptive image fusion rule and comparative between them.

Reham Gharbia, Sara Ahmed, and A. E. Hassanien, "Remote Sensing Image Registration Based On Particle Swarm Optimization and Mutual Information", The Second International Conference on INformation systems Design and Intelligent Applications ((INDIA 15), Kalyani, India, January 8-9 , 2015.
Reham Gharbia, Ali Hassan El Baz, A. T. Azar, and A. E. Hassanien, "Principal component analysis and fuzzy-based rules approach for satellite image fusion", The annual IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Beijing, China, 6 July, 2014.
Reham Gharbia, Ali Hassan El Baz, A. E. Hassanien, and M. F.Tolba, Remote sensing image fusion approach based on Brovey and wavelets transforms, , 2014. Abstractibica2014_p37.pdf

This paper proposes a remote sensing image fusion approach
based on a modi ed version of Brovey transform and wavelets. The aim is
to reduce the spectral distortion in the Brovey transform and spatial dis-
tortion in the wavelets transform. The remote sensing data sets has been
chosen for the image fusion process and the data sets were selected from
di erent satellite images in south western Sinai, Egypt. Experiments were
conducted on a variety of images, and the results of the proposed image
fusion approach were compared with principle component analysis and
the traditional Brovey approach. The obtained results show that the
proposed approach achieves less de
ection and reduces the distortion.
Several quality evaluation metrics were used for the proposed image fu-
sion like standard deviation, correlation coecient, entropy information,
peak signal to noise ratio, root mean square error and structural simi-
larity index. Experimental results obtained from proposed image fusion
approach prove that the use of the Brovey with wavelets can eciently
preserve the spectral information while improving the spatial resolution
of the remote sensing.

Rehab Mahmoud, Nashwa El-Bendary, H. M. A. E. H. H. S. M. O. A., "Machine Learning-Based Measurement System for Spinal Cord Injuries Rehabilitation Length of Stay", Proceedings of the Second Euro-China Conference on Intelligent Data Analysis and Applications, ECC 2015, , Ostrava, Czech Republic, , June 29 - July , 2015. Abstract

Disabilities, specially Spinal Cord Injuries (SCI), affect people behaviors, their response, and the participation in daily activities. People with SCI need long care, cost, and time to improve their heath status. So, the rehabilitation of people with SCI on different period of times is required. In this paper, we proposed an automated system to estimate the rehabilitation length of stay of patients with SCI. The proposed system is divided into three phases; (1) pre-processing phase, (2) classification phase, and (3) rehabilitation length of stay measurement phase. The proposed system is automating International Classification of Functioning, Disability and Health classification (ICF) coding process, monitoring progress in patient status, and measuring the rehabilitation time based on support vector machines algorithm. The proposed system used linear and radial basis (RBF) kernel functions of support vector machines (SVMs) classification algorithm to classify data. The accuracy obtained was full match on training and testing data for linear kernel function and 93.3 % match for RBF kernel function.

Ragab A. El-Sehiemy, Mostafa Abdelkhalik El-hosseini, and A. E. Hassanien, " Multiobjective Real-Coded Genetic Algorithm for Economic/Environmental Dispatch Problem, ", Studies in Informatics and Control, , vol. 22, issue 2, pp. 113-122, 2013. Website
Raffat, M. M., R. Ahmed, and A. E. Hassanien, "Blind 2D vector data watermarking approach using random table and polar coordinates", 2nd IEEE International Conference on Uncertainty Reasoning and Knowledge Engineering (URKE): 14-15 Aug., 2012. Abstract
n/a
Raffat, M. M., R. Ahmed, and A. E. Hassanien, "Blind 2D vector data watermarking approach using random table and polar coordinates", 2nd IEEE International Conference on Uncertainty Reasoning and Knowledge Engineering (URKE) , Jalarta Turky , 14-15 Aug., pp. 67 – 70, 2012. Abstract

In this paper, a blind robust watermark approach for authentication 2D Map based on random table and polar coordinates mapping is presented. Firstly, All vertices will mapped into polar coordinate system. Then, the watermark is embedded using the random table of the decimal valued of the polar coordinates through the digit substitution of the decimal part. Theoretical analysis and excremental results shows that the presented approach is robust against a various attacks such as rotation, scaling and translation and also good imperceptibility.

Raffat, M. M., R. Ahmed, and A. E. Hassanien, "Blind 2D vector data watermarking approach using random table and polar coordinates", 2nd IEEE International Conference on Uncertainty Reasoning and Knowledge Engineering (URKE): 14-15 Aug., 2012. Abstract
n/a
Radhwan, A., M. Kamel, M. Y. Dahab, and A. E. Hassanien, "Forecasting Exchange Rates: A Chaos-Based Regression Approach. Intelligent Approach.", International Journal of Rough Sets and Data Analysis (IJRSDA) , vol. 2, issue 1, 2015. AbstractWebsite

Accurate forecasting for future events constitutes a fascinating challenge for theoretical and for applied researches. Foreign Exchange market (FOREX) is selected in this research to represent an example of financial systems with a complex behavior. Forecasting a financial time series can be a very hard task due to the inherent uncertainty nature of these systems. It seems very difficult to tell whether a series is stochastic or deterministic chaotic or some combination of these states. More generally, the extent to which a non-linear deterministic process retains its properties when corrupted by noise is also unclear. The noise can affect a system in different ways even though the equations of the system remain deterministic. Since a single reliable statistical test for chaoticity is not available, combining multiple tests is a crucial aspect, especially when one is dealing with limited and noisy data sets like in economic and financial time series. In this research, the authors propose an improved model for forecasting exchange rates based on chaos theory that involves phase space reconstruction from the observed time series and the use of support vector regression (SVR) for forecasting.Given the exchange rates of a currency pair as scalar observations, observed time series is first analyzed to verify the existence of underlying nonlinear dynamics governing its evolution over time. Then, the time series is embedded into a higher dimensional phase space using embedding parameters.In the selection process to find the optimal embedding parameters,a novel method based on the Differential Evolution (DE) geneticalgorithm(as a global optimization technique) was applied. The authors have compared forecasting accuracy of the proposed model against the ordinary use of support vector regression. The experimental results demonstrate that the proposed method, which is based on chaos theory and genetic algorithm,is comparable with the existing approaches.

Radhwan, A., M. Kamel, M. Y. Dahab, and A. E. Hassanien, "Forecasting Exchange Rates: A Chaos-Based Regression Approach", International Journal of Rough Sets and Data Analysis (IJRSDA), vol. 2, no. 1: IGI Global, pp. 38–57, 2015. Abstract
n/a
P
Peters, J. F., and S. K. Pal, "Cantor, fuzzy, near, and rough sets in image analysis", Rough fuzzy image analysis: Foundations and methodologies: CRC Press, pp. 1–1, 2010. Abstract
n/a
Panda, M., A. E. Hassanien, and A. Abraham, "Hybrid Data Mining Approach for Image Segmentation Based Classification", International Journal of Rough Sets and Data Analysis (IJRSDA), vol. 3, issue 2, 2016. AbstractWebsite

Evolutionary harmony search algorithm is used for its capability in finding solution space both locally and globally. In contrast, Wavelet based feature selection, for its ability to provide localized frequency information about a function of a signal, makes it a promising one for efficient classification. Research in this direction states that wavelet based neural network may be trapped to fall in a local minima whereas fuzzy harmony search based algorithm effectively addresses that problem and able to get a near optimal solution. In this, a hybrid wavelet based radial basis function (RBF) neural network (WRBF) and feature subset harmony search based fuzzy discernibility classifier (HSFD) approaches are proposed as a data mining technique for image segmentation based classification. In this paper, the authors use Lena RGB image; Magnetic resonance image (MR) and Computed Tomography (CT) Image for analysis. It is observed from the obtained simulation results that Wavelet based RBF neural network outperforms the harmony search based fuzzy discernibility classifiers.

Panda, M., N. El-Bendary, M. A. Salama, A. E. Hassanien, and A. Abraham, "Computational social networks: Tools, perspectives, and challenges", Computational Social Networks: Springer London, pp. 3–23, 2012. Abstract
n/a
Panda, M., A. E. Hassanien, and A. Abraham, "Hybrid Data Mining Approach for Image Segmentation Based Classification", Biometrics: Concepts, Methodologies, Tools, and Applications: IGI Global, pp. 1543–1561, 2017. Abstract
n/a
Panda, M., N. El-Bendary, M. A. Salama, A. E. Hassanien, and A. Abraham, "Computational social networks: Tools, perspectives, and challenges", Computational Social Networks: Springer London, pp. 3–23, 2012. Abstract
n/a
Panda, M., N. El-Bendary, M. Salama, A. E. Hassanien, and A. Abraham, "Social Networks Analysis: Basics, Measures and Visualizing Authorship Networks in DBLP Data", Computational Social Networks: Mining and Visualization, London, Series in Computer Communications and Networks, Springer Verlag, 2012. Abstract

Social Network Analysis (SNA) is becoming an important tool for investigators, but all the necessary information is often available in a distributed environment. Currently there is no information system that helps managers and team leaders to monitor the status of a social network. This chapter presents an overview of the basic concepts of social networks in data analysis including social networks analysis metrics and performances. Different problems in social networks are discussed such as uncertainty, missing data and finding the shortest path in social network. Community structure, detection and visualization in social network analysis is also discussed and reviewed. This chapter bridges the gap among the users by combining social network analysis methods and information visualization technology to help user visually identify the occurrence of a possible relationship amongst the members in a social network. In addition, briefly describing the different performance measures that have been encountered during any network analysis in order to understand the fundamental behind the comprehension. This chapter also, presents an online analysis tool called Forcoa.NET, which is built over the DBLP dataset of publications from the field of computer science, which is focused on the analysis and visualization of the co-authorship relationship based on the intensity and topic of joint publications. Challenges to be ad dressed and future directions of research are also presented and an extensive bibliography is included.order to understand the fundamental behind the comprehension. This chapter also, presents an online analysis tool called Forcoa.NET, which is built over the DBLP dataset of publications from the field of computer science, which is focused on the analysis and visualization of the co-authorship relationship based on the intensity and topic of joint publications. Challenges to be ad dressed and future directions of research are also presented and an extensive bibliography is included.

Panda, M., N. El-Bendary, M. A. Salama, A. E. Hassanien, and A. Abraham, "Computational social networks: Tools, perspectives, and challenges", Computational Social Networks: Springer London, pp. 3–23, 2012. Abstract
n/a
P. K. Nizar Banu, H. H. Inbarani, A. T. Azar, H. S. Own, and A. E. Hassanien, "Rough Set Based Feature Selection for Egyptian Neonatal Jaundice ", The 2nd International Conference on Advanced Machine Learning Technologies and Applications , Egypt, November 17-19, , 2014.
O
Own, H. S., N. I. GHALL, and E. L. L. A. H. A. S. S. A. N. I. E. N. ABOUL, "Hybrid Dual-Tree Wavelet Transform and Adaptive Threshold for Image Denoising", International journal of imaging and robotics, vol. 9, no. 1: CESER Publications, pp. 17–25, 2013. Abstract
n/a
Own, H. S., and A. E. Hassanien, "Rough wavelet hybrid image classification scheme", Journal of Convergence Information Technology, vol. 3, no. 4, pp. 65–75, 2008. Abstract
n/a
Tourism