E. Emary, H. M. Zawbaa, A. E. Hassanien, and B. PARV,
" Multi-objective retinal vessel localization using flower pollination search algorithm with pattern search, , ",
Advances in Data Analysis and Classification, , issue (27 May 2016 on line), , pp. pp 1-17, 2017.
AbstractThis paper presents a multi-objective retinal blood vessels localization approach based on flower pollination search algorithm (FPSA) and pattern search (PS) algorithm. FPSA is a new evolutionary algorithm based on the flower pollination process of flowering plants. The proposed multi-objective fitness function uses the flower pollination search algorithm (FPSA) that searches for the optimal clustering of the given retinal image into compact clusters under some constraints. Pattern search (PS) as local search method is then applied to further enhance the segmentation results using another objective function based on shape features. The proposed approach for retinal blood vessels localization is applied on public database namely DRIVE data set. Results demonstrate that the performance of the proposed approach is comparable with state of the art techniques in terms of accuracy, sensitivity, and specificity with many extendable features.
Babers, R., and A. E. Hassanien,
" A Nature-Inspired Metaheuristic Cuckoo Search Algorithm for Community Detection in Social Networks", ",
International Journal of Service Science, Management, Engineering, and Technology, IJSSMET , vol. 8, issue 1, pp. 50-, 2017.
AbstractIn last few years many approaches have been proposed to detect communities in social networks using diverse ways. Community detection is one of the important researches in social networks and graph analysis. This paper presents a cuckoo search optimization algorithm with Lévy flight for community detection in social networks. Experimental on well-known benchmark data sets demonstrates that the proposed algorithm can define the structure and detect communities of complex networks with high accuracy and quality. In addition, the proposed algorithm is compared with some swarms algorithms including discrete bat algorithm, artificial fish swarm, discrete Krill Herd, ant lion algorithm and lion optimization algorithm and the results show that the proposed algorithm is competitive with these algorithms.
Abdelhameed Ibrahim, T. Horiuchi, S. Tominaga, and A. E. Hassanien,
" Color Invariant Representation and Applications",
Handbook of Research on Machine Learning Innovations and Trends,, USA, IGI, USA, pp.21, 2017.
AbstractIllumination factors such as shading, shadow, and highlight observed from object surfaces affect the appearance and analysis of natural color images. Invariant representations to these factors were presented in several ways. Most of these methods used the standard dichromatic reflection model that assumed inhomogeneous dielectric material. The standard model cannot describe metallic objects. This chapter introduces an illumination-invariant representation that is derived from the standard dichromatic reflection model for inhomogeneous dielectric and the extended dichromatic reflection model for homogeneous metal. The illumination color is estimated from two inhomogeneous surfaces to recover the surface reflectance of object without using a reference white standard. The overall performance of the invariant representation is examined in experiments using real-world objects including metals and dielectrics in detail. The feasibility of the representation for effective edge detection is introduced and compared with the state-of-the-art illumination-invariant methods.
El-Said, S. A., H. M. A. Atta, and A. E. Hassanien,
" Interactive soft tissue modelling for virtual reality surgery simulation and planning,",
Int. J. Computer Aided Engineering and Technology, Inderscience, , vol. 9, issue 1, pp. pp. 38-61, 2017.
AbstractWhile most existing virtual reality-based surgical simulators in the literature use linear deformation models, soft-tissues exhibit geometric and material nonlinearities that should be taken into account for realistic modelling of the deformations. In this paper, an interactive soft tissue model (ISTM) which enables flexible, accurate and robust simulation of surgical interventions on virtual patients is proposed. In ISTM, simulating the tool-tissue interactions using nonlinear dynamic analysis is formulated within a total Lagrangian framework, and the energy function is modified by adding a term in order to achieve material incompressibility. The simulation results show that ISTM increases the stability and eliminates integration errors in the dynamic solution, decreases calculation costs by a factor of 5-7, and leads to very stable and sufficiently accurate results. From the simulation results it can be concluded that the proposed model can successfully create acceptable soft tissue models and generate realistically visual effects of surgical simulation.
Tharwatd, A., T. Gaber, and A. E. Hassanien,
" One-dimensional vs. two-dimensional based features: Plant identification approach, ",
Journal of Applied Logic , vol. Available online 15 November 2017 , 2017.
AbstractThe number of endangered species has been increased due to shifts in the agricultural production, climate change, and poor urban planning. This has led to investigating new methods to address the problem of plant species identification/classification. In this paper, a plant identification approach using 2D digital leaves images was proposed. The approach used two features extraction methods based on one-dimensional (1D) and two-dimensional (2D) and the Bagging classifier. For the 1D-based methods, Principal Component Analysis (PCA), Direct Linear Discriminant Analysis (DLDA), and PCA + LDA techniques were applied, while 2DPCA and 2DLDA algorithms were used for the 2D-based method. To classify the extracted features in both methods, the Bagging classifier, with the decision tree as a weak learner was used. The five variants, i.e. PCA, PCA + LDA, DLDA, 2DPCA, and 2DLDA, of the approach were tested using the Flavia public dataset which consists of 1907 colored leaves images. The accuracy of these variants was evaluated and the results showed that the 2DPCA and 2DLDA methods were much better than using the PCA, PCA + LDA, and DLDA. Furthermore, it was found that the 2DLDA method was the best one and the increase of the weak learners of the Bagging classifier yielded a better classification accuracy. Also, a comparison with the most related work showed that our approach achieved better accuracy under the same dataset and same experimental setup.
Alaa Tharwat, Yasmine S. Moemen, and A. E. Hassanien,
"Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines",
Journal of Biomedical Informatics, vol. 68, pp. 132-149 , 2017.
AbstractMeasuring toxicity is an important step in drug development. Nevertheless, the current experimental methods used to estimate the drug toxicity are expensive and time-consuming, indicating that they are not suitable for large-scale evaluation of drug toxicity in the early stage of drug development. Hence, there is a high demand to develop computational models that can predict the drug toxicity risks. In this study, we used a dataset that consists of 553 drugs that biotransformed in liver. The toxic effects were calculated for the current data, namely, mutagenic, tumorigenic, irritant and reproductive effect. Each drug is represented by 31 chemical descriptors (features). The proposed model consists of three phases. In the first phase, the most discriminative subset of features is selected using rough set-based methods to reduce the classification time while improving the classification performance. In the second phase, different sampling methods such as Random Under-Sampling, Random Over-Sampling and Synthetic Minority Oversampling Technique (SMOTE), BorderLine SMOTE and Safe Level SMOTE are used to solve the problem of imbalanced dataset. In the third phase, the Support Vector Machines (SVM) classifier is used to classify an unknown drug into toxic or non-toxic. SVM parameters such as the penalty parameter and kernel parameter have a great impact on the classification accuracy of the model. In this paper, Whale Optimization Algorithm (WOA) has been proposed to optimize the parameters of SVM, so that the classification error can be reduced. The experimental results proved that the proposed model achieved high sensitivity to all toxic effects. Overall, the high sensitivity of the WOA + SVM model indicates that it could be used for the prediction of drug toxicity in the early stage of drug development.
Sharif, M. M., Alaa Tharwat, A. E. Hassanien, and H. A. Hefny,
"Enzyme Function Classification: Reviews, Approaches, and Trends: ",
Handbook of Research on Machine Learning Innovations and Trends , USA, IGI, USA pp. 26 , 2017.
AbstractEnzymes are important in our life and it plays a vital role in the most biological processes in the living organisms and such as metabolic pathways. The classification of enzyme functionality from a sequence, structure data or the extracted features remains a challenging task. Traditional experiments consume more time, efforts, and cost. On the other hand, an automated classification of the enzymes saves efforts, money and time. The aim of this chapter is to cover and reviews the different approaches, which developed and conducted to classify and predict the functions of the enzyme proteins in addition to the new trends and challenges that could be considered now and in the future. The chapter addresses the main three approaches which are used in the classification the function of enzymatic proteins and illustrated the mechanism, pros, cons, and examples for each one.
Inbarani, H., U. S. Kum, A. T. Azar, and A. E. Hassanien,
"Hybrid Rough-Bijective Soft Set Classification system,",
Neural Computing and Applications (NCAA) , pp. , pp, 1-21, 2017 , 2017.
AbstractIn today’s medical world, the patient’s data with symptoms and diseases are expanding rapidly, so that analysis of all factors with updated knowledge about symptoms and corresponding new treatment is merely not possible by medical experts. Hence, the essential for an intelligent system to reflect the different issues and recognize an appropriate model between the different parameters is evident. In recent decades, rough set theory (RST) has been broadly applied in various fields such as medicine, business, education, engineering and multimedia. In this study, a hybrid intelligent system that combines rough set (RST) and bijective soft set theory (BISO) to build a robust classifier model is proposed. The aim of the hybrid system is to exploit the advantages of the constituent components while eliminating their limitations. The resulting approach is thus able to handle data inconsistency in datasets through rough sets, while obtaining high classification accuracy based on prediction using bijective soft sets. Toward estimating the performance of the hybrid rough-bijective soft set (RBISO)-based classification approach, six benchmark medical datasets (Wisconsin breast cancer, liver disorder, hepatitis, Pima Indian diabetes, echocardiogram data and thyroid gland) from the UCI repository of machine learning databases are utilized. Experimental results, based on evaluation in terms of sensitivity, specificity and accuracy, are compared with other well-known classification methods, and the proposed algorithm provides an effective method for medical data classification.
Hassanien, A. E., T. Gaber, U. Mokhtar, and H. Hefny,
"An Improved Moth Flame Optimization Algorithm based on Rough Sets for Tomato Diseases Detection",
Journal of Computers and Electronics in Agriculture, vol. 136, issue 15, pp. 86-96 , 2017.
AbstractPlant diseases is one of the major bottlenecks in agricultural production that have bad effects on the economic of any country. Automatic detection of such disease could minimize these effects. Features selection is a usual pre-processing step used for automatic disease detection systems. It is an important process for detecting and eliminating noisy, irrelevant, and redundant data. Thus, it could lead to improve the detection performance. In this paper, an improved moth-flame approach to automatically detect tomato diseases was proposed. The moth-flame fitness function depends on the rough sets dependency degree and it takes into a consideration the number of selected features. The proposed algorithm used both of the power of exploration of the moth flame and the high performance of rough sets for the feature selection task to find the set of features maximizing the classification accuracy which was evaluated using the support vector machine (SVM). The performance of the MFORSFS algorithm was evaluated using many benchmark datasets taken from UCI machine learning data repository and then compared with feature selection approaches based on Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) with rough sets. The proposed algorithm was then used in a real-life problem, detecting tomato diseases (Powdery mildew and early blight) where a real dataset of tomato disease were manually built and a tomato disease detection approach was proposed and evaluated using this dataset. The experimental results showed that the proposed algorithm was efficient in terms of Recall, Precision, Accuracy and F-Score, as long as feature size reduction and execution time.