Publications

Export 1250 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
E. Emary, H. M. Zawbaa, A. E. Hassanien, and B. PARV, " Multi-objective retinal vessel localization using flower pollination search algorithm with pattern search, , ", Advances in Data Analysis and Classification, , issue (27 May 2016 on line), , pp. pp 1-17, 2017. AbstractWebsite

This paper presents a multi-objective retinal blood vessels localization approach based on flower pollination search algorithm (FPSA) and pattern search (PS) algorithm. FPSA is a new evolutionary algorithm based on the flower pollination process of flowering plants. The proposed multi-objective fitness function uses the flower pollination search algorithm (FPSA) that searches for the optimal clustering of the given retinal image into compact clusters under some constraints. Pattern search (PS) as local search method is then applied to further enhance the segmentation results using another objective function based on shape features. The proposed approach for retinal blood vessels localization is applied on public database namely DRIVE data set. Results demonstrate that the performance of the proposed approach is comparable with state of the art techniques in terms of accuracy, sensitivity, and specificity with many extendable features.

Eslam Hassan, A. Hafez, A. E. H. and, and A. Fahmy, " Nature inspired algorithms for solving the community detection problem, ", Logic Journal of the IGPL: Oxford Journals, 2017.
Amira Sayed A. Aziza, S. E. - O. Hanafi, and A. E. Hassanien, " , Comparison of classification techniques applied for network intrusion detection and classification, ", Journal of Applied Logic Available online 14 November 2017, 2017. AbstractWebsite
Babers, R., and A. E. Hassanien, " A Nature-Inspired Metaheuristic Cuckoo Search Algorithm for Community Detection in Social Networks", ", International Journal of Service Science, Management, Engineering, and Technology, IJSSMET , vol. 8, issue 1, pp. 50-, 2017. AbstractWebsite

In last few years many approaches have been proposed to detect communities in social networks using diverse ways. Community detection is one of the important researches in social networks and graph analysis. This paper presents a cuckoo search optimization algorithm with Lévy flight for community detection in social networks. Experimental on well-known benchmark data sets demonstrates that the proposed algorithm can define the structure and detect communities of complex networks with high accuracy and quality. In addition, the proposed algorithm is compared with some swarms algorithms including discrete bat algorithm, artificial fish swarm, discrete Krill Herd, ant lion algorithm and lion optimization algorithm and the results show that the proposed algorithm is competitive with these algorithms.

Alaa Tharwat, and A. E. Hassanien, " Chaotic Antlion Algorithm for Parameter Optimization of Support Vector Machine", Applied Intelligence , vol. in press, 2017. AbstractWebsite

Support Vector Machine (SVM) is one of the well-known classifiers. SVM parameters such as kernel
parameters and penalty parameter (C) significantly influences the classification accuracy. In this
paper, a novel Chaotic Antlion Optimization (CALO) algorithm has been proposed to optimize the
parameters of SVM classifier, so that the classification error can be reduced. To evaluate the proposed
model (CALO-SVM), the experiment adopted six standard datasets which are obtained from UCI machine
learning data repository. For verification, the results of the CALO-SVM algorithm are compared
with grid search, which is a conventional method of searching parameter values, standard Ant Lion
Optimization (ALO) SVM, and two well-known optimization algorithms: Genetic algorithm (GA)
and Particle Swarm Optimization (PSO). The experimental results proved that the proposed model is
capable to find the optimal values of the SVM parameters and avoids the local optima problem. The
results also demonstrated lower classification error rates compared with GA and PSO algorithms

Abdelhameed Ibrahim, T. Horiuchi, S. Tominaga, and A. E. Hassanien, " Color Invariant Representation and Applications", Handbook of Research on Machine Learning Innovations and Trends,, USA, IGI, USA, pp.21, 2017. Abstract

Illumination factors such as shading, shadow, and highlight observed from object surfaces affect the appearance and analysis of natural color images. Invariant representations to these factors were presented in several ways. Most of these methods used the standard dichromatic reflection model that assumed inhomogeneous dielectric material. The standard model cannot describe metallic objects. This chapter introduces an illumination-invariant representation that is derived from the standard dichromatic reflection model for inhomogeneous dielectric and the extended dichromatic reflection model for homogeneous metal. The illumination color is estimated from two inhomogeneous surfaces to recover the surface reflectance of object without using a reference white standard. The overall performance of the invariant representation is examined in experiments using real-world objects including metals and dielectrics in detail. The feasibility of the representation for effective edge detection is introduced and compared with the state-of-the-art illumination-invariant methods.

El-Said, S. A., H. M. A. Atta, and A. E. Hassanien, " Interactive soft tissue modelling for virtual reality surgery simulation and planning,", Int. J. Computer Aided Engineering and Technology, Inderscience, , vol. 9, issue 1, pp. pp. 38-61, 2017. AbstractWebsite

While most existing virtual reality-based surgical simulators in the literature use linear deformation models, soft-tissues exhibit geometric and material nonlinearities that should be taken into account for realistic modelling of the deformations. In this paper, an interactive soft tissue model (ISTM) which enables flexible, accurate and robust simulation of surgical interventions on virtual patients is proposed. In ISTM, simulating the tool-tissue interactions using nonlinear dynamic analysis is formulated within a total Lagrangian framework, and the energy function is modified by adding a term in order to achieve material incompressibility. The simulation results show that ISTM increases the stability and eliminates integration errors in the dynamic solution, decreases calculation costs by a factor of 5-7, and leads to very stable and sufficiently accurate results. From the simulation results it can be concluded that the proposed model can successfully create acceptable soft tissue models and generate realistically visual effects of surgical simulation.

Issa, M., and A. E. Hassanien, " Multiple Sequence Alignment Optimization Using Meta-Heuristic Techniques: ", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

Sequence alignment is a vital process in many biological applications such as Phylogenetic trees construction, DNA fragment assembly and structure/function prediction. Two kinds of alignment are pairwise alignment which align two sequences and Multiple Sequence alignment (MSA) that align sequences more than two. The accurate method of alignment is based on Dynamic Programming (DP) approach which suffering from increasing time exponentially with increasing the length and the number of the aligned sequences. Stochastic or meta-heuristics techniques speed up alignment algorithm but with near optimal alignment accuracy not as that of DP. Hence, This chapter aims to review the recent development of MSA using meta-heuristics algorithms. In addition, two recent techniques are focused in more deep: the first is Fragmented protein sequence alignment using two-layer particle swarm optimization (FTLPSO). The second is Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm (MO-BFO).

Tharwatd, A., T. Gaber, and A. E. Hassanien, " One-dimensional vs. two-dimensional based features: Plant identification approach, ", Journal of Applied Logic , vol. Available online 15 November 2017 , 2017. AbstractWebsite

The number of endangered species has been increased due to shifts in the agricultural production, climate change, and poor urban planning. This has led to investigating new methods to address the problem of plant species identification/classification. In this paper, a plant identification approach using 2D digital leaves images was proposed. The approach used two features extraction methods based on one-dimensional (1D) and two-dimensional (2D) and the Bagging classifier. For the 1D-based methods, Principal Component Analysis (PCA), Direct Linear Discriminant Analysis (DLDA), and PCA + LDA techniques were applied, while 2DPCA and 2DLDA algorithms were used for the 2D-based method. To classify the extracted features in both methods, the Bagging classifier, with the decision tree as a weak learner was used. The five variants, i.e. PCA, PCA + LDA, DLDA, 2DPCA, and 2DLDA, of the approach were tested using the Flavia public dataset which consists of 1907 colored leaves images. The accuracy of these variants was evaluated and the results showed that the 2DPCA and 2DLDA methods were much better than using the PCA, PCA + LDA, and DLDA. Furthermore, it was found that the 2DLDA method was the best one and the increase of the weak learners of the Bagging classifier yielded a better classification accuracy. Also, a comparison with the most related work showed that our approach achieved better accuracy under the same dataset and same experimental setup.

Soliman, M. M., and A. E. Hassanien, "3D Watermarking Approach Using Particle Swarm Optimization Algorithm", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

This work proposes a watermarking approach by utilizing the use of Bio-Inspired techniques such as swarm intelligent in optimizing watermarking algorithms for 3D models. In this proposed work we present an approach of 3D mesh model watermarking by introducing a new robust 3D mesh watermarking authentication methods by ensuring a minimal surface distortion at the same time ensuring a high robustness of extracted watermark. In order to achieve these requirements this work proposes the use of Particle Swarm Optimization (PSO) as Bio-Inspired optimization techniques. The experiments were executed using different sets of 3D models. In all experimental results we consider two important factors: imperceptibility and robustness. The experimental results show that the proposed approach yields a watermarked object with good visual definition; at the same time, the embedded watermark was robust against a wide variety of common attacks.

Tharwat;, A., A. E. Hassanien;, and B. E. Elnaghi, "A BA-based algorithm for parameter optimization of support vector machine", Pattern recognition letter, 2017. AbstractWebsite

Support Vector Machine (SVM) parameters such as kernel parameter and penalty parameter (C) have a great impact on the complexity and accuracy of predicting model. In this paper, Bat algorithm (BA) has been proposed to optimize the parameters of SVM, so that the classification error can be reduced. To evaluate the proposed model (BA-SVM), the experiment adopted nine standard datasets which are obtained from UCI machine learning data repository. For verification, the results of the BA-SVM algorithm are compared with grid search, which is a conventional method of searching parameter values, and two well-known optimization algorithms: Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The experimental results proved that the proposed model is capable to find the optimal values of the SVM parameters and avoids the local optima problem. The results also demonstrated lower classification error rates compared with PSO and GA algorithms.

el-hoseny, M., Alaa Tharwat, and A. E. Hassanien, "Bezier Curve Based Path Planning in a Dynamic Field using Modified Genetic Algorithm", Journal of Computational Science, 2017. Website
Sahlol, A. T., and A. E. Hassanien, "Bio-Inspired Optimization Algorithms for Arabic Handwritten Characters", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

There are still many obstacles for achieving high recognition accuracy for Arabic handwritten optical character recognition system, each character has a different shape, as well as the similarities between characters. In this chapter, several feature selection-based bio-inspired optimization algorithms including Bat Algorithm, Grey Wolf Optimization, Whale optimization Algorithm, Particle Swarm Optimization and Genetic Algorithm have been presented and an application of Arabic handwritten characters recognition has been chosen to see their ability and accuracy to recognize Arabic characters. The experiments have been performed using a benchmark dataset, CENPARMI by k-Nearest neighbors, Linear Discriminant Analysis, and random forests. The achieved results show superior results for the selected features when comparing the classification accuracy for the selected features by the optimization algorithms with the whole feature set in terms of the classification accuracy and the processing time. The experiments have been performed using a benchmark dataset, CENPARMI by k-Nearest neighbors, Linear Discriminant Analysis, and random forests. The achieved results show superior results for the selected features when comparing the classification accuracy for the selected features by the optimization algorithms with the whole feature set in terms of the classification accuracy and the processing time.

Alaa Tharwat, Yasmine S. Moemen, and A. E. Hassanien, "Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines", Journal of Biomedical Informatics, vol. 68, pp. 132-149 , 2017. AbstractWebsite

Measuring toxicity is an important step in drug development. Nevertheless, the current experimental methods used to estimate the drug toxicity are expensive and time-consuming, indicating that they are not suitable for large-scale evaluation of drug toxicity in the early stage of drug development. Hence, there is a high demand to develop computational models that can predict the drug toxicity risks. In this study, we used a dataset that consists of 553 drugs that biotransformed in liver. The toxic effects were calculated for the current data, namely, mutagenic, tumorigenic, irritant and reproductive effect. Each drug is represented by 31 chemical descriptors (features). The proposed model consists of three phases. In the first phase, the most discriminative subset of features is selected using rough set-based methods to reduce the classification time while improving the classification performance. In the second phase, different sampling methods such as Random Under-Sampling, Random Over-Sampling and Synthetic Minority Oversampling Technique (SMOTE), BorderLine SMOTE and Safe Level SMOTE are used to solve the problem of imbalanced dataset. In the third phase, the Support Vector Machines (SVM) classifier is used to classify an unknown drug into toxic or non-toxic. SVM parameters such as the penalty parameter and kernel parameter have a great impact on the classification accuracy of the model. In this paper, Whale Optimization Algorithm (WOA) has been proposed to optimize the parameters of SVM, so that the classification error can be reduced. The experimental results proved that the proposed model achieved high sensitivity to all toxic effects. Overall, the high sensitivity of the WOA + SVM model indicates that it could be used for the prediction of drug toxicity in the early stage of drug development.

Hassanin, M. F., A. M. Shoeb, and A. E. Hassanien, "Designing Multilayer Feedforward Neural Networks Using Multi-Verse Optimizer", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

Artificial neural network (ANN) models are involved in many applications because of its great computational capabilities. Training of multi-layer perceptron (MLP) is the most challenging problem during the network preparation. Many techniques have been introduced to alleviate this problem. Back-propagation algorithm is a powerful technique to train multilayer feedforward ANN. However, it suffers from the local minima drawback. Recently, meta-heuristic methods have introduced to train MLP like Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Cuckoo Search (CS), Ant Colony Optimizer (ACO), Social Spider Optimization (SSO), Evolutionary Strategy (ES) and Grey Wolf Optimization (GWO). This chapter applied Multi-Verse Optimizer (MVO) for MLP training. Seven datasets are used to show MVO capabilities as a promising trainer for multilayer perceptron. Comparisons with PSO, GA, SSO, ES, ACO and GWO proved that MVO outperforms all these algorithms.

Oliva, D., and A. E. Hassanien, "Digital Images Segmentation Using a Physical-Inspired Algorithm", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

Segmentation is one of the most important tasks in image processing. It classifies the pixels into two or more groups depending on their intensity levels and a threshold value. The classical methods exhaustively search the best thresholds for a spec image. This process requires a high computational effort, to avoid this situation has been incremented the use of evolutionary algorithms. The Electro-magnetism-Like algorithm (EMO) is an evolutionary method which mimics the attraction-repulsion mechanism among charges to evolve the members of a population. Different to other algorithms, EMO exhibits interesting search capabilities whereas maintains a low computational overhead. This chapter introduces a multilevel thresholding (MT) algorithm based on the EMO and the Otsu's method as objective function. The combination of those techniques generates a multilevel segmentation algorithm which can effectively identify the threshold values of a digital image reducing the number of iterations.

Ahmed, K., and A. E. Hassanien, "An Efficient Approach for Community Detection in Complex Social Networks Based on Elephant Swarm Optimization Algorithm", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

Complex social networks analysis is an important research trend, which basically based on community detection. Community detection is the process of dividing the complex social network into a dynamic number of clusters based on their edges connectivity. This paper presents an efficient Elephant Swarm Optimization Algorithm for community detection problem (EESO) as an optimization approach. EESO can define dynamically the number of communities within complex social network. Experimental results are proved that EESO can handle the community detection problem and define the structure of complex networks with high accuracy and quality measures of NMI and modularity over four popular benchmarks such as Zachary Karate Club, Bottlenose Dolphin, American college football and Facebook. EESO presents high promised results against eight community detection algorithms such as discrete krill herd algorithm, discrete Bat algorithm, artificial fish swarm algorithm, fast greedy, label propagation, walktrap, Multilevel and InfoMap.

Osman, M. A., A. Darwish, A. Z. Ghalwash, and A. E. Hassanien, "Enhanced Breast Cancer Diagnosis System Using Fuzzy Clustering Means Approach in Digital Mammography", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

Breast cancer or malignant breast neoplasm is the most common type of cancer in women. Researchers are not sure of the exact cause of breast cancer. If the cancer can be detected early, the options of treatment and the chances of total recovery will increase. Computer Aided Diagnostic (CAD) systems can help the researchers and specialists in detecting the abnormalities early. The main goal of computerized breast cancer detection in digital mammography is to identify the presence of abnormalities such as mass lesions and Micro calcification Clusters (MCCs). Early detection and diagnosis of breast cancer represent the key for breast cancer control and can increase the success of treatment. This chapter investigates a new CAD system for the diagnosis process of benign and malignant breast tumors from digital mammography. X-ray mammograms are considered the most effective and reliable method in early detection of breast cancer. In this chapter, the breast tumor is segmented from medical image using Fuzzy Clustering Means (FCM) and the features for mammogram images are extracted. The results of this work showed that these features are used to train the classifier to classify tumors. The effectiveness and performance of this work is examined using classification accuracy, sensitivity and specificity and the practical part of the proposed system distinguishes tumors with high accuracy.

Osman, M. A., A. Darwish, A. Z. Ghalwash, and A. E. Hassanien, "Enhanced Breast Cancer Diagnosis System Using Fuzzy Clustering Means Approach in Digital Mammography", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

Breast cancer or malignant breast neoplasm is the most common type of cancer in women. Researchers are not sure of the exact cause of breast cancer. If the cancer can be detected early, the options of treatment and the chances of total recovery will increase. Computer Aided Diagnostic (CAD) systems can help the researchers and specialists in detecting the abnormalities early. The main goal of computerized breast cancer detection in digital mammography is to identify the presence of abnormalities such as mass lesions and Micro calcification Clusters (MCCs). Early detection and diagnosis of breast cancer represent the key for breast cancer control and can increase the success of treatment. This chapter investigates a new CAD system for the diagnosis process of benign and malignant breast tumors from digital mammography. X-ray mammograms are considered the most effective and reliable method in early detection of breast cancer. In this chapter, the breast tumor is segmented from medical image using Fuzzy Clustering Means (FCM) and the features for mammogram images are extracted. The results of this work showed that these features are used to train the classifier to classify tumors. The effectiveness and performance of this work is examined using classification accuracy, sensitivity and specificity and the practical part of the proposed system distinguishes tumors with high accuracy.

Sharif, M. M., Alaa Tharwat, A. E. Hassanien, and H. A. Hefny, "Enzyme Function Classification: Reviews, Approaches, and Trends: ", Handbook of Research on Machine Learning Innovations and Trends , USA, IGI, USA pp. 26 , 2017. Abstract

Enzymes are important in our life and it plays a vital role in the most biological processes in the living organisms and such as metabolic pathways. The classification of enzyme functionality from a sequence, structure data or the extracted features remains a challenging task. Traditional experiments consume more time, efforts, and cost. On the other hand, an automated classification of the enzymes saves efforts, money and time. The aim of this chapter is to cover and reviews the different approaches, which developed and conducted to classify and predict the functions of the enzyme proteins in addition to the new trends and challenges that could be considered now and in the future. The chapter addresses the main three approaches which are used in the classification the function of enzymatic proteins and illustrated the mechanism, pros, cons, and examples for each one.

Ismael, G., A. E. H. and, and A. Taher, "Feature selection via a novel chaotic crow search algorithm,", Neural Computing and Applications , 2017. AbstractWebsite

Crow search algorithm (CSA) is a new natural inspired algorithm proposed by Askarzadeh in 2016. The main inspiration of CSA came from crow search mechanism for hiding their food. Like most of the optimization algorithms, CSA suffers from low convergence rate and entrapment in local optima. In this paper, a novel meta-heuristic optimizer, namely chaotic crow search algorithm (CCSA), is proposed to overcome these problems. The proposed CCSA is applied to optimize feature selection problem for 20 benchmark datasets. Ten chaotic maps are employed during the optimization process of CSA. The performance of CCSA is compared with other well-known and recent optimization algorithms. Experimental results reveal the capability of CCSA to find an optimal feature subset which maximizes the classification performance and minimizes the number of selected features. Moreover, the results show that CCSA is superior compared to CSA and the other algorithms. In addition, the experiments show that sine chaotic map is the appropriate map to significantly boost the performance of CSA.

Inbarani, H., U. S. Kum, A. T. Azar, and A. E. Hassanien, "Hybrid Rough-Bijective Soft Set Classification system,", Neural Computing and Applications (NCAA) , pp. , pp, 1-21, 2017 , 2017. AbstractWebsite

In today’s medical world, the patient’s data with symptoms and diseases are expanding rapidly, so that analysis of all factors with updated knowledge about symptoms and corresponding new treatment is merely not possible by medical experts. Hence, the essential for an intelligent system to reflect the different issues and recognize an appropriate model between the different parameters is evident. In recent decades, rough set theory (RST) has been broadly applied in various fields such as medicine, business, education, engineering and multimedia. In this study, a hybrid intelligent system that combines rough set (RST) and bijective soft set theory (BISO) to build a robust classifier model is proposed. The aim of the hybrid system is to exploit the advantages of the constituent components while eliminating their limitations. The resulting approach is thus able to handle data inconsistency in datasets through rough sets, while obtaining high classification accuracy based on prediction using bijective soft sets. Toward estimating the performance of the hybrid rough-bijective soft set (RBISO)-based classification approach, six benchmark medical datasets (Wisconsin breast cancer, liver disorder, hepatitis, Pima Indian diabetes, echocardiogram data and thyroid gland) from the UCI repository of machine learning databases are utilized. Experimental results, based on evaluation in terms of sensitivity, specificity and accuracy, are compared with other well-known classification methods, and the proposed algorithm provides an effective method for medical data classification.

Hassanien, A. E., T. Gaber, U. Mokhtar, and H. Hefny, "An Improved Moth Flame Optimization Algorithm based on Rough Sets for Tomato Diseases Detection", Journal of Computers and Electronics in Agriculture, vol. 136, issue 15, pp. 86-96 , 2017. AbstractWebsite

Plant diseases is one of the major bottlenecks in agricultural production that have bad effects on the economic of any country. Automatic detection of such disease could minimize these effects. Features selection is a usual pre-processing step used for automatic disease detection systems. It is an important process for detecting and eliminating noisy, irrelevant, and redundant data. Thus, it could lead to improve the detection performance. In this paper, an improved moth-flame approach to automatically detect tomato diseases was proposed. The moth-flame fitness function depends on the rough sets dependency degree and it takes into a consideration the number of selected features. The proposed algorithm used both of the power of exploration of the moth flame and the high performance of rough sets for the feature selection task to find the set of features maximizing the classification accuracy which was evaluated using the support vector machine (SVM). The performance of the MFORSFS algorithm was evaluated using many benchmark datasets taken from UCI machine learning data repository and then compared with feature selection approaches based on Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) with rough sets. The proposed algorithm was then used in a real-life problem, detecting tomato diseases (Powdery mildew and early blight) where a real dataset of tomato disease were manually built and a tomato disease detection approach was proposed and evaluated using this dataset. The experimental results showed that the proposed algorithm was efficient in terms of Recall, Precision, Accuracy and F-Score, as long as feature size reduction and execution time.

abd elaziz, M., and A. E. Hassanien, "An improved social spider optimization algorithm based on rough sets for solving minimum number attribute reduction problem,", Neural Computing and Applications, 2017 , 2017. AbstractWebsite

The minimum number attribute reduction problem is an important issue when dealing with huge amounts of data. The problem of minimum attribute reduction is formally known to be as an NP complete nonlinearly constrained optimization problem. Social spider optimization algorithm is a new meta-heuristic algorithm of the swarm intelligence field to global solution. The social spider optimization algorithm is emulates the behavior of cooperation between spiders based on the biological laws of the cooperative colony. Inspired by the social spiders, in this paper, an improved social spider algorithm for the minimal reduction problem was proposed. In the proposed algorithm, the fitness function depends on the rough sets dependency degree and it takes into a consideration the number of selected features. For each spider, the fitness function is computed and compared with the global best fitness value. If the current value is better, then the global best fitness is replaced with it and its position became the reduct set. Then, the position of each spider is updated according to its type. This process is repeated until the stopping criterion is satisfied. To validate the proposed algorithm, several real clinical medical datasets which are available from the UCI Machine Learning Repository were used to compute the performance of the proposed algorithm. The experimental results illustrate that the proposed algorithm is superior to state-of-the-art swarm-based in terms of classification accuracy while limiting number of features.