, Berlin Heidelberg, pp. 26-36, Communications in Computer and Information Science - Springer , 2011.
This paper presents a feature-based retinal image registration schema. A structural feature, namely, bifurcation structure, has been used for the proposed feature-based registration schema. The bifurcation structure is composed of a master bifurcation point and its three connected neighbors. The characteristic vector of each bifurcation structure consists of the normalized branching angle and length, which is invariant against translation, rotation, scaling, and even modest distortion. The proposed schema is composed of five fundamental phases, namely, input retinal images pre-processing, vascular network detection, noise removal, bifurcation points detection in vascular networks, and bifurcation points matching in pairs of retinal images. The effectiveness of the proposed schema is demonstrated by the experiments with 12 pairs retinal images collected from clinical patients. The registration is carried out through optimizing a certain similarity function, namely, normalized correlation of images. It has been observed that the proposed schema has achieved good performance accuracy.