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Abstract
Asthma is a chronic pulmonary disease with marked infiltrating inflammatory cells and reduced respiratory performance. 
Echinochrome (Ech) is a dark-red pigment isolated from the sea urchin spines, shells, and ova. It has antioxidant, antimi-
crobial, and anti-inflammatory properties, but whether it can be used in asthma treatment has yet to be investigated. In this 
research, we aimed to study the inhibitory actions of Ech on allergic asthma symptoms in mice. Mice were divided into 
4 groups (n = 8 for each): control, ovalbumin-challenged, and Ech-treated (0.1 and 1 mg/kg). At the end of the experi-
ment, nasal scratching, lung oxidative stress, airway inflammation, and remodeling were assessed. In ovalbumin-challenged 
BALB/C mice, treatment with Ech significantly decreased nasal scratching, lung oxidative stress, inflammatory cell infiltra-
tion, mucus hyperproduction and hyperplasia of goblet cells, IgE levels, and inflammatory cytokines. It also inhibited NF-κB 
phosphorylation. This is the first study to investigate the immunomodulatory effect of Ech against allergic asthma in mice. 
According to our findings, we imply that Ech may be utilized as a treatment for allergic asthma.
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Introduction

Asthma is a persistent airway condition in which immune 
dysregulation causes persistent inflammation, resulting in 
abnormal bronchoconstriction, mucus secretion, and respira-
tory problems in those suffering (Gillissen and Paparoupa 
2015). Asthma is characterized by chronic airway inflam-
mation caused by infiltrating eosinophils, T lymphocytes, 
and mast cells and releasing of pro-inflammatory cytokines 
and lipid mediators (Wang et al. 2021). More than 300 
million individuals worldwide have asthma (Dharmage 
et al. 2019). According to the Global Initiative for Asthma 
(GINA), there might be 400 million cases of asthma by 
2025 (Wang et al. 2022). The development of asthma has 
been associated with an imbalance between T helper (Th)1/
Th2 immune responses (Zhu et al. 2020). Inappropriate, 
excessive Th2 response results in the increased release of 

Th2-related cytokines, such as interleukin(IL)-4, IL-5, and 
IL-13 (Zheng et al. 2019), which cause immunoglobulin E 
(IgE) synthesis, mucus hypersecretion, and accumulation 
of oxygen free radicals by the airway infiltrating eosino-
phils and other immune cells (Antunes et al. 2022). Aller-
gic asthma is frequently associated with increased reactive 
oxygen species (ROS) formation and impaired antioxidant 
mechanisms, causing oxidative stress in the lungs (Zhu et al. 
2021), which affects antioxidant activity, enhances the pro-
duction of inflammatory mediators, and causes goblet cell 
hyperplasia (Malaquias et al. 2018).

The pathogenesis of asthma has been linked to several bio-
chemical cascades, especially nuclear factor kappa beta (NF-
κB) (Bai et al. 2022). NF-κB is a key mediator of immuno-
logical and inflammatory actions via stimulating target gene 
transcription and initiating inflammatory cytokines (Edwards 
et al. 2009; Zhou et al. 2014). The sustained activation of 
NF-κB is related to asthmatic inflammation. It has been shown 
that suppressing the NF-κB signaling cascade could ameliorate 
ovalbumin (OVA)-induced allergic asthma (Wang et al. 2018).

For the preclinical testing of asthma medications, 
researchers can choose from a variety of animal models of 
experimental asthma. OVA-induced experimental asthma 
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is a common model for testing potential antiasthmatic 
drugs (Thakur et al. 2019). High levels of serum IgE, 
airway inflammation, epithelial hypertrophy, goblet cell 
hyperplasia, and airway hyperresponsiveness are reported 
in OVA-sensitized and challenged animals, making them 
a popular asthma model (Kim et al. 2019).

Corticosteroids and antileukotrienes are two principal 
anti-inflammatory medications for the treatment of asthma, 
which are successful for most patients (Ducharme 2004). 
Nevertheless, some people show serious asthma symptoms 
and resist such drugs (Woolcock 1993). Nowadays, dis-
covering medications to treat and protect against severe 
asthmatic conditions is critical (Eger and Bel 2019).

Marine animals are one of the primary sources of new 
natural compounds with promising biological applications 
(Karthikeyan et al. 2022). Some marine natural products 
are of enormous importance because of their therapeutic 
significance (Papon et al. 2022). Echinochrome (Ech) is 
the most frequent naturally-occurring pigment found in sea 
urchin shells, spines, and ova, which has the most potent 
antioxidant properties (Mohamed 2021). Elimination of 
ROS, binding metal ions, and reducing lipid peroxidation 
are all among the antioxidant processes that Ech can use 
(Jeong et al. 2014). It has antioxidative, antiviral, antialgal, 
and antimicrobial properties (Park et al. 2019). A previous 
study has shown that Ech possesses antifibrotic and anti-
inflammatory properties by suppressing fibroblast stimula-
tion and proinflammatory cytokine expression (Park et al. 
2021). For the first time, the current research is aimed at 
evaluating the effect of Ech on lung oxidative stress markers 
in addition to airway inflammation and remodeling.

Materials and methods

Chemicals and kits

Standard Ech (Vladivostok, Russia) and Dulbecco’s phos-
phate buffer saline (PBS) 10X were obtained from SEROX 
GmbH® (Mannheim, Germany). Ovalbumin, aluminum 
hydroxide, and other materials used in this research were 
obtained from Sigma-Aldrich (St. Louis, MO, USA). OVA-
specific IgE (Cat No. E-20391Mo) and total IgE (Cat No. 
E-20550Mo) (Houston, TX, USA), IL-4 (Cat No. BMS613), 
IL-13 (Cat No. BMS6015), and IL-1β (Cat No. BMS6002) 
were obtained from Invitrogen by Thermo Fisher Scien-
tific (USA). Rat anti-mouse PerCP-conjugated CD3+ anti-
body (Clone: 145-2C11) was from BD Biosciences (USA). 
Anti-mouse phospho-RELA (S536) polyclonal antibody 
(p-NFκB-p65) was from Cusabio, Biotech Co., Ltd. DAB-
substrate kit was from Thermo Fisher Scientific (USA).

Animals

Female BALB/c mice (Mus musculus) (6–8 weeks old) were 
obtained from the National Research Center (Egypt). They 
were housed and grouped in sterile cages and fed, and had free 
access to water ad libitum. This study was approved by the 
Institutional Animal Care and Use Committee (IACUC) with 
a number of CU/I/F/32/22 at Cairo University in Egypt. All of 
the experimental procedures were carried out in accordance 
with international standards for the care and use of laboratory 
animals and performed in accordance with the advice provided 
in the most recent edition of the Guide for the Care and Use of 
Laboratory Animals, National Research Council, USA.

Ech isolation

The Amarowicz method was used to isolate the pigments in 
the shell and spines, with minor modifications (Amarowicz 
et al. 1994; Kuwahara et al. 2009). The shells and spines were 
cleaned in cold tepid water, dried in air for two days in the 
dark at 4°C, and ground after the internal organs were elimi-
nated. The obtained powder was dissolved by the addition of 
30 mL of 6 M HCl. With an equal volume of diethyl ether, 
the formed dark-red solution was separated four times. The 
obtained ether layer was treated with 5% NaCl. Then anhy-
drous sodium sulfate was added to remove water from the ether 
solution. Finally, the Heidolph rotary evaporator (Schwabach, 
Germany) evaporated the diethyl ether under reduced pressure. 
Ech was obtained and kept in the dark at −30°C.

High‑performance liquid chromatography (HPLC) 
analysis

A Shimadzu HPLC system (Kyoto, Japan) was used, which 
included two LC20AD pumps, a DGU-20 A3 degasser, and 
an SPD-M20 A diode-array detector. With a 1.0 mL/min flow 
rate, chromatographic separation was performed using a Zor-
bax Eclipse Plus C18 column (250 mm 4.6 mm, 5 m, Agilent 
Acetonitrile/methanol (5:9), and 0.1% formic acid made up 
the binary mobile phase. An elution profile looked like this: 
30–80% acetonitrile in formic acid for 0–25 min (linear gra-
dient). The volume of injection was 20µL. Between 200 and 
800 nm, the detection was noted. The data analysis system 
comprised the LC Solution (Shimadzu). DMSO was used to 
dissolve Ech at a concentration of 5 mg/mL.

OVA sensitization and inhalation

Following acclimatization for two weeks, 32 mice were ran-
domly assigned into 4 groups (8 mice/group), including a 
control group, OVA group, low-dose Ech (0.1 mg/kg) group, 
and high-dose Ech (1 mg/kg) group. The asthma model was 
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established according to Ou et al. (2021) with some modi-
fications. The mice were sensitized intraperitoneally with 
20 μg of OVA and 1 mg of alum gel dissolved in 200 μL 
of 0.9% saline on the 1st, 7th, and 14th days. From day 21 
to 23, mice were placed into a container and challenged by 
atomization inhalation with a continuous dose of 2.5% OVA 
(1 hour per day). Mice from the control group were given 
the same volume of saline instead of OVA. One hour before 
challenging the mice, Ech was injected intraperitoneally for 
7 days starting from day 17, while the control group was 
given the same amount of 2% DMSO, as illustrated in Fig. 1.

Sample collection

At the end of the experiment, by using isoflurane, mice were 
anesthetized and blood was drawn from the retro-orbital 
plexus for measuring the allergic and inflammatory media-
tors in the serum. The bronchoalveolar lavage fluid (BALF) 
was collected for identifying and quantifying the infiltrating 
inflammatory cells as well as the cytokine levels. Finally, the 
lung was obtained for the histopathological and immunohis-
tochemical examination.

Evaluation of nasal scratching

Asthmatic behavior was evaluated according to Liu et al. 
(2022) with minor modifications. On the last day, nasal 
scratching was evaluated and scored for 10 min after the 
last challenge with 2.5% OVA. The scoring was as follows: 
mice who scratched their noses 0–2 times scored 0 points, 
3–5 times scored 1 point, 6–8 times scored 2 points, and nine 
times or more scored 3 points.

Collection of BALF and cell count

The trachea was intubated and rinsed with 0.6 mL PBS 
buffer containing bovine serum albumin (BSA) and EDTA 
three times. Each mouse’s lavage solutions were preserved 
on ice and then centrifuged at 2000 rpm for 10 min at 4°C 
using a cooling centrifuge (Sigma, 3-30K, Germany); the 
supernatants were gathered and stored at −80 °C. The 
pellet was suspended in 100 μL PBS and stained with 
Wright–Giemsa stain. Total and differential inflammatory 
cell counts were calculated. By counting 100 cells per slide 
at a magnification of ×40, the slides were examined for dif-
ferential cell count (Wang et al. 2019).

Measurement of OVA‑specific IgE in serum and BALF

Blood was obtained from the retro-orbital plexus and then 
centrifuged at 3000 rpm for 15 min at 4°C to obtain serum, 
which was kept at −80°C. Serum and BALF levels of OVA-
specific IgE were measured using ELISA kits by an ELISA 
plate reader (DAS Instruments, model A3, Rome, Italy).

Determination of serum total IgE, IL‑4, and IL‑1β 
and BALF IL‑13 levels

Serum levels of total IgE, IL-4, and IL-1β were measured. 
At the same time, the BALF supernatant was used to meas-
ure the concentration of IL-13 using ELISA kits according 
to the manufacturer’s procedures.

Fig. 1   Diagram representing the protocol for the induction of the experimental model of allergic asthma along with Ech treatment
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Determination of lipid peroxidation, GSH level, 
and catalase and GST activities in the lung tissue

The supernatant was collected by centrifuging the lung tis-
sues at 25000 rpm for 10 min at 4°C after weighting and 
homogenizing them in 0.1M Tris-HCl buffer (pH 7.4). 
Subsequently, the levels of malondialdehyde (MDA), nitric 
oxide (NO), glutathione (GSH), glutathione-S-transferase 
(GST), and catalase (CAT) activities were measured by com-
mercial kits.

Lung histology

Mice were dissected and the lung was collected and fixed in 
10% neutral buffer formalin for 24 hours; then, 4-µm-thick 
sections were cut and stained with hematoxylin and eosin 
(H&E) and periodic-acid Schiff (PAS). The extent of lung 
inflammation and hyperplasia of goblet cells was evaluated 
based on a previously reported scoring system (Tanaka et al. 
2001). In brief, the semi-quantitative scoring system for lung 
inflammation was as follows: 0, no cells; 1, a few cells; 2, a 
ring of cells (1 cell layer deep); 3, a ring of cells (2–4 cells 
deep); and 4, a ring of cells (> 4 cells deep). At the same 
time, the system for mucus secretion was as follows: 0, < 
0.5% PAS-positive cells; 1, < 25%; 2, 25–50%; 3, 50–75%; 
and 4, > 75%. Four different sections were used to score 
infiltrating immune cells and goblet cells.

Flow cytometric analysis

Fresh spleens were collected from each group of mice and 
a syringe piston was used to squeeze the samples in PBS 
gently. Cells were suspended in 1 mL of PBS and centri-
fuged for 10 min at 1300 rpm at 4°C. After discarding the 
supernatants and gently vortexing the pellets in 200 μL of 
PBS, 100 μL of suspended cells was put into all reaction 
tubes, then 3 μL rat anti-mouse PerCP-conjugated CD3+ 
antibody. After that, the reaction tubes were placed in the 
dark for 20 min, and 2 mL of the lysis buffer was added and 
placed again in the dark for 10 min. For 3 min, tubes were 
centrifuged. The pellet was rinsed with 1 mL of PBS sup-
plemented with BSA and EDTA for washing after the super-
natants were discarded and centrifuged. Finally, cell pellets 
were resuspended in 400 μL of PBS, and the supernatants 
were discarded before the analyses using FACS Melody 
(BD Biosciences, USA).

Immunohistochemistry (IHC)

Tissue sections were cut into 4-µm sections, de-paraffinized, 
rehydrated, and exposed to heat-induced antigen retrieval 
step for 15 min, followed by blocking steps for protein and 
endogenous peroxidases using BSA and hydrogen peroxide, 

respectively. After washing in PBS, tissue slides were incu-
bated with anti-mouse phospho-RELA (S536) polyclonal 
antibody (p-NFκB-p65) (at a dilution of 1:200) for 12 h at 
the refrigerator; then HRP-labeled secondary antibody was 
applied. After washing, the DAB substrate was utilized to 
produce the color. Positive expression was assessed as area % 
using ImageJ software.

Statistical analysis

Statistical Package for the Social Sciences (SPSS) was uti-
lized for statistical analyses (IBM). Mean ± SEM was used 
to express values. The differences between groups were eval-
uated using one-way analysis of variance (ANOVA). Graphs 
were drawn using the software of GraphPad Prism version 
8. The analysis of flow cytometry data was performed using 
BD FACSDiva software version 6.1.1. Duncan’s post hoc 
test was employed to compare the group means, and P < 
0.05 was regarded as statistically significant.

Results

HPLC data

As shown in Fig. 2, the HPLC analyses of isolated Ech 
revealed a significant peak with a retention period of 7.11 
min that matched the standard Ech with a total concentra-
tion of 85.02%.

Ech attenuated nasal scratching and the infiltration 
of inflammatory cells in BALF

Shortness of breath, wheezing, and sneezing are common 
clinical signs of asthma. Although spotting these symptoms 
in rodents can be difficult, they show signs like scratch-
ing, tickling, and rapid breathing (Wang et al. 2015). It was 
noticed that OVA-challenged mice had significantly ele-
vated overall nasal scratching scores. However, following 
Ech treatment, the scores significantly decreased, showing 
the ameliorative effect of Ech on asthma symptoms. Addi-
tionally, the inflammatory cell counts in the BALF of the 
OVA group were examined to study the impact of Ech on 
the infiltrating immune cells. The OVA group’s infiltrating 
inflammatory cells in BALF were notably greater than in 
the control group. Ech treatment (0.1 and 1 mg/kg) inhibited 
this infiltration in a dose-dependent way. These findings are 
shown in Table 1.

Ech decreased the serum and BALF levels 
of immunoglobulins and cytokines

The key characteristic of allergic asthma is a rise in blood 
IgE levels (Scirica et al. 2007). In asthmatic mice, the levels 
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of IgE, OVA-specific IgE, IL-4, IL-1β, and IL-13 increased 
significantly (P <0.05). While Ech treatment dose-depend-
ently decreased these mediators’ levels compared to the asth-
matic group, as shown in Table 2.

Effect of Ech on oxidative stress parameters

Table 3 provides data on the lung oxidative stress markers 
(MDA, NO, GSH, CAT, and GST). It was found that OVA 
mice had significantly greater MDA and NO concentrations 
than the control group (P <0.05). In contrast, a significant 
decline (P <0.05) was shown in the Ech-treated group in a 

dose-dependent manner. Additionally, there was a significant 
decline (P <0.05) in the concentration of GSH and GST and 
CAT activities in asthmatic mice. Despite this, a significant 
rise (P <0.05) was noticed in the Ech-treated mice in a dose-
dependent way.

Ech ameliorated pathological alterations in lung 
tissue

H&E and PAS were used to demonstrate airway infiltrat-
ing immune cells, goblet cell hyperplasia, and mucus 
secretion. The OVA group’s lung tissue displayed greater 

Fig. 2   HPLC chromatograph of 
standard Ech and isolated Eche 
from sea urchin

Table 1   Ech effects on nasal scratching scoring and BALF infiltering inflammatory cells of OVA-challenged mice

Values are given as means for 8 mice in each group ± standard error of the mean (SEM). The value that does not share a common superscript 
letter is significantly different (P <0.05). The values are arranged from the lowest (a) to the highest (d). The difference between groups is (P <0.05)

Group Nasal scratching score Total cell count 
(×106/mL)

Eosinophil count 
(×105/mL)

Neutrophil count 
(×105/mL)

Lymphocyte count 
(×105/mL)

Macrophage 
count (×105/mL)

Control 0.75 ± 0.25a 0.80 ± 0.12a 0.00 ± 0.00a 1.60 ± 0.23a 2.00 ± 0.29a 4.40 ± 0.64a

OVA 2.50 ± 0.29b 10.67 ± 0.67d 55.00 ± 2.52d 21.13 ± 2.77d 17.00 ± 2.08c 13.53 ± 1.78b

Ech (0.1mg/kg) 1.50 ± 0.29a 7.25 ± 0.08c 37.37 ± 4.00c 13.30 ± 1.26c 6.06 ± 1.24ab 15.78 ± 3.38b

Ech (1 mg/kg) 1.25 ± 0.25a 4.60 ± 0.31b 13.99 ± 0.59b 7.39 ± 1.77b 8.50 ± 0.76b 16.10 ± 1.07b

Table 2   The effect of Ech on serum and BALF concentrations of IgE, OVA-specific IgE, IL-4, IL-1β, and IL-13 of OVA-challenged mice

Values are given as means for 8 mice in each group ± standard error of the mean (SEM). The value that does not share a common letter superscript 
is significantly different (P <0.05). The values are arranged from the lowest (a) to the highest (d). The difference between groups is (P <0.05)

Groups Serum
OVA-specific 
IgE (OD)

BALF
OVA-specific 
IgE (OD)

Serum
IgE (pg/mL)

Serum
IL-4 (pg/mL)

Serum
IL-β (pg/mL)

BALF
IL-13 (pg/mL)

Control 0.08±0.01a 0.10±0.01a 318.60 8.71a 13.41±8.51a 91.78±1.98a 19.17±2.54a

OVA 0.44±0.01d 0.44±0.01d 670.60±53.44c 210.18±47.97c 120.67±2.53d 73.78±16.05b

Ech (0.1 mg/kg) 0.39±0.01c 0.35±0.01c 498.60±10.20b 93.41±7.94 b 110.67±0.83c 48.77±4.20a

Ech (1 mg/kg) 0.29±0.02b 0.32±0.01b 430.60±17.20b 52.24±6.34 ab 102.15±2.08b 29.01±2.46a
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immune cell infiltration into the airways (Fig. 3), excessive 
mucus production, and goblet cell hyperplasia (Fig. 4). 
However, Ech treatment improved these changes in a dose-
dependent way. The inflammation and mucus scores are 
shown in Table 4.

Effect of Ech on the percentage of CD3+ cells

The percentage of CD3+ cells in asthmatic mice increased 
significantly (P <0.05) compared to the control group. How-
ever, a significant decline (P <0.05) was shown after Ech 
administration in a dose-dependent way (Fig. 5) (Table 5).

Table 3   Ech effects on lung homogenate oxidative stress parameters of OVA-challenged mice

Values are given as means for 8 mice in each group ± standard error of the mean (SEM). The value that does not share a common super-
script letter is significantly different (P <0.05). The values are arranged from the lowest (a) to the highest (d). The difference between groups is  
(P <0.05)

Groups MDA (nmol/g·tissue) NO (µmol/g·tissue) GSH (mg/g·tissue) CAT (U/g·tissue) GST (U/g·tissue)

Control 5.86±0.23a 508.54±20.59a 0.48±0.03d 51.50±4.55d 3.81±0.19c

OVA 8.30±0.22c 738.42±27.22c 0.08±0.02a 12.17±1.07a 2.19±0.12a

Ech (0.1 mg/kg) 7.32±0.51b 632.46±37.73b 0.17±0.02b 22.57±0.91b 3.06±0.21b

Ech (1 mg/kg) 6.21±0.15a 537.68±30.73a 0.37±0.04c 37.57±2.80c 3.67±0.17c

Fig. 3   Effect of Ech on histopathological alterations in the lung tis-
sue of mice of different groups, (H&E) (400X). a Control: the lung 
showed average bronchioles (B) with average epithelial lining and 
average blood vessels (BV). b OVA: the lung showed bronchioles 
with ulcerated epithelial lining, mildly congested blood vessels, thick-
ened alveolar walls, and excessive peri-bronchiolar inflammatory 

infiltrate with scattered eosinophils. c 0.1 mg/kg Ech: bronchioles 
with average epithelial lining and increased peri-bronchiolar and peri-
vascular inflammatory infiltrate and average blood vessels. d 1 mg/kg 
Ech: bronchioles with average epithelial lining, average blood vessels, 
average alveolar walls, and mild peri-bronchiolar and peri-vascular 
inflammatory infiltrate
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Immunohistochemical detection 
of phosphorylated‑NF‑κB p65

The immune expression of Phospho-NF-κB p65 is illustrated 
in Fig. 6. The lung p-NF-κB p65 area % of asthmatic mice 
increased significantly (P <0.05). However, a significant 
reduction (P < 0.05) was noticed after Ech treatment in a 
dose-dependent way (Table 6).

Discussion

Asthma is a persistent disorder of the bronchi. It is charac-
terized by the accumulation of the airways by inflamma-
tory cells and their secreted mediators, such as cytokine 
and chemokines, which cause inflammation, hyperreac-
tivity, and irreversible airway blockage (Jung et al. 2008). 
Nowadays, corticosteroids are frequently used to manage 
asthma symptoms. However, their use is restricted due to 
resistance and severe problems. Additionally, this approach 
negatively impacts children’s bone mass and growth (Jassal 
2015). Consequently, it is vital to investigate new potential 
therapeutic strategies as well as the underlying molecular 
pathophysiology of asthma. Animal models of OVA-induced 
airway inflammation share various cellular and molecular 
characteristics with human asthma (Aun et al. 2017). We 
examined the anti-inflammatory and antioxidant effects of 
Ech in an asthmatic OVA mouse model. Additionally, we 
evaluated behavioral, biochemical, histopathological, and 
immunohistopathological analyses. The effects of Ech on 
oxidative stress markers, antioxidant parameters, Th1 and 
Th2-related cytokines, IgE, infiltrating inflammatory cells, 
airway remodeling, and NF-κB activation were examined.

Fig. 4   Effect of Ech on mucus secretion in the lung tissue of mice of different groups, (H&E) (400X). a Control, b OVA, c 0.1 mg/kg Ech, and d 
1 mg/kg Ech groups. B= Bronchioles

Table 4   Ech effects on inflammation and mucus score of the lung tissue 
of different groups

Values are given as means for 8 mice in each group ± standard 
error of the mean (SEM). The value that does not share a common 
superscript letter is significantly different (P <0.05). The values 
are arranged from the lowest (a) to the highest (d). The difference 
between groups is (P <0.05)

Group Inflammation score Mucus score

Control 0.67 ± 0.33a 0.0 ± 0.0a

OVA 3.67 ± 0.33c 3.33 ± 0.33c

Ech (0.1 mg/kg) 2.33 ± 0.33b 1.67 ± 0.33b

Ech (1 mg/kg) 1.33 ± 0.33ab 0.67 ± 0.33a
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The pathophysiology of asthma was strongly influenced 
by Th2 cytokines such as IL-4, IL-5, and IL-13. These 
cytokines strongly correlate with inflammatory cell infil-
tration, IgE generation, eosinophil activation, and airway 
hyperresponsiveness (Ray and Cohn 1999). One of the 
most crucial cytokines for controlling Th2 inflammatory 
responses is IL-4, which stimulates the maturation of B 
cells and the switch to IgE (Renz et al. 1995). IL-13 is an 
essential immunomodulatory cytokine in the pathophysi-
ology of bronchial inflammation. In terms of bronchial 

hyperresponsiveness and secretion of mucus, IL-13 is more 
significant than IL-4. Thus, inhibiting these Th2 cytokines 
may reduce allergic asthma (Barnes 2001). It was reported 
that Ech suppressed IL-4 and IL-13 in the atopic dermati-
tis model. In our investigation, mice treated with OVA had 
significantly greater levels of such cytokines, whereas Ech 
administration greatly reduced their production. Following 
OVA sensitization and inhalation, the serum and the BALF 
concentrations of OVA-specific IgE increased dramatically 
in the OVA group. At the same time, this rise was reduced 
in the Ech treatment groups. These outcomes are consistent 
with earlier research where OVA exposure raised IgE con-
centrations (Eftekhar et al. 2019). IL-1β induces the polari-
zation of Th2, which activates infiltrating eosinophils and 
produces cytokines such as IL-5 (Rajizadeh et al. 2019). 
The concentration of IL-1β increased in the OVA-challenged 
group, while a significant decrease was shown after Ech 
administration. These results are consistent with previous 
results where the expression of IL-1β genes was significantly 
elevated in the OVA murine model of asthma (shakerinasab 
et al. 2022).

The development of asthma is highly affected by the infil-
tration of inflammatory cells (Chung 1986). Eosinophils and 
lymphocytes are among the inflammatory cells infiltrating 
the airways during OVA-induced asthma (Song et al. 2008). 
Our findings in this investigation showed that the infiltrating 

Fig. 5   Dot plots representing the percentage of CD3+ cells in the spleen of mice of different groups. a Control, b OVA, c 0.1 mg/kg Ech, and d 1 
mg/kg Ech groups

Table 5   Ech effect on the percentage of CD3+ lymphocyte was deter-
mined in the lung tissue of different animal groups

Values are given as means for 8 mice in each group ± standard 
error of the mean (SEM). The value that does not share a common 
superscript letter is significantly different (P <0.05). The values 
are arranged from the lowest (a) to the highest (d). The difference 
between groups is (P <0.05)

Group % Frequency of 
CD3+ lympho-
cytes

Control 16.77 ± 0.55a

OVA 47.53 ± 10.68b

Ech (0.1mg/kg) 26.13 ± 4.91a

Ech (1 mg/kg) 22.00 ± 1.04a
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immune cells count was elevated in the OVA-challenged 
mice. In contrast, Ech treatment significantly reduced their 
infiltration. Although macrophage infiltration did not change, 
this could mean that Ech treatment influences the polariza-
tion of macrophage rather than the infiltration. These results 
can be supported by the study conducted by Oh et al. (2019) 
in which Ech administration stimulated the polarization of 
macrophages toward the M2 type, which helps to reduce 
inflammation and promote tissue repair. Additionally, flow 

cytometric analysis showed increased proliferation of CD3+ 
cells in the spleen of asthmatic mice. However, Ech treat-
ment causes a notable decline in a dose-dependent manner.

Oxidative stress is a key mediator in the pathophysiol-
ogy of asthma (Adam-Bonci et al. 2021). Previous stud-
ies showed that OVA-induced animals’ airways generate 
high ROS levels (Nishida et al. 2002). The accumulation 
of these ROS causes airway hyperresponsiveness (Sadeghi-
Hashjin et al. 1996). MDA generation is one of the most 
critical determinants of oxidative stress. In this research, 
it was figured out that there was a significant rise in the 
MDA concentration in the OVA group. At the same time, a 
significant decrease was shown in the Ech-treated groups. 
These findings agree with the results investigated by Sadek 
et al. (2022), where the MDA level increased in septic rats, 
and Ech administration showed a significant decline in the 
MDA level.

NO is a potent free radical that combines with super-
oxide anions to generate peroxide nitrite, which can harm 
cell membranes (Malaquias et al. 2018). It may have a dual 
function: at normal concentrations, it is critical for signal 
transduction, and elevated NO and reactive nitrogen spe-
cies levels can cause cell destruction (Yu et al. 2018). In our 

Fig. 6   Immunohistochemistry of Phospho-NF-κB p65 expression in lung tissue (400X) both in the bronchioles (B) (blue arrow) and the alveoli 
(yellow arrow). a Control, b OVA, c 0.1 mg/kg Ech, and d 1 mg/kg Ech groups

Table 6   Ech effect on the immunohistochemical expression of 
Phospho-NF-κB p65 in the lung tissue of different groups

Values are given as means for 8 mice in each group ± standard 
error of the mean (SEM). The value that does not share a common 
superscript letter is significantly different (P <0.05). The values 
are arranged from the lowest (a) to the highest (d). The difference 
between groups is (P <0.05)

Group p-NF-κB p65 area %

Control 1.40 ± 0.07a

OVA 15.21 ± 0.48c

Ech (0.1 mg/kg) 3.15 ± 0.40b

Ech (1 mg/kg) 2.20 ± 0.12ab
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work, the lung tissue homogenate NO level was significantly 
elevated in the OVA-challenged mice. However, the Ech 
administration resulted in a statistically significant decline 
in NO level. Our findings are consistent with those made by 
Dweik et al. (2001), where the OVA challenge raised the 
level of NO in asthmatic airways.

GSH and CAT are essential antioxidants for alleviating 
lung cell fibrosis and damage in asthmatic patients (Rogers 
and Cismowski 2018). According to Martínez-Martos et al. 
(2014), GSH is a crucial biological antioxidant that inhib-
its the generation of free radicals. Generally, a reduction 
in GSH concentration reflects an elevation in ROS. In the 
study, GSH concentrations were decreased notably in the 
OVA group. At the same time, a significant rise was shown 
in the Ech treatment groups. Previous research indicated that 
OVA administration decreased GSH levels, which were then 
correlated to their deletion as a result of lipid peroxidation 
and ROS generation (Xiao et al. 2023). CAT can allevi-
ate cell damage by converting H2O2 into water and oxy-
gen (Sahiner et al. 2018). In this study, the activity of CAT 
was significantly reduced in OVA-challenged mice, while 

its activity was enhanced after Ech treatment. These results 
agree with the previous study (Dalouchi et al. 2021), where 
the CAT activity was reduced in the OVA-induced animal 
model. GSTs are essential in detoxifying various chemicals 
by combining the electrophilic molecules with GSH (Econo-
mopoulos and Sergentanis 2010). In this study, the activity 
of GST decreased significantly in asthmatic mice. However, 
a significant elevation in its activity was observed after Ech 
administration. These findings agree with a previous study 
where asthmatic mice’s lungs had reduced GST activity lev-
els (Ajayi et al. 2022). In this research, we investigated the 
ameliorative effect of Ech against parameters associated with 
oxidative stress; this was achieved by observing changes in 
the production of MDA and NO as well as the levels of 
GSH, CAT, and GST. Our findings imply that Ech can effi-
ciently attenuate oxidative stress and the harm it causes to 
the airways.

The lung histopathology results, which showed that 
OVA-challenged mice had higher scores for inflammation 
and mucus secretion than the control group, supported the 
biochemical findings. After Ech administration, these scores 

Fig. 7   Schematic diagram showing the suggested mechanism of Ech action on airway inflammation and oxidative stress in the OVA-induced 
asthma model
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significantly decreased, and the histopathological changes 
were also attenuated. In another study, it was discovered 
that administering Ech reduced the level of oxidative stress 
caused by lipopolysaccharide in the lungs and inhibited air-
way lymphocyte infiltration (Kuznetsova et al. 2019). NF-κB 
plays a crucial role in the regulation of cytokine production 
(Huang et al. 2015). Previous research revealed that NF-κB 
activation contributed to airway inflammation in human 
and murine asthmatics (Bureau et al. 2000). The bronchial 
epithelium of asthmatic mice displayed a significant and 
rapid NF-κB p65 nuclear translocation (Zhang et al. 2015). 
It has been demonstrated that OVA-challenged mice had 
higher levels of phospho-NF-κB p65 (Zhang et al. 2017). 
The present immunohistochemical findings reveal that Ech 
significantly reduced the level of phospho-NF-кBp65. These 
results suggest that Ech helps treat asthma.

Conclusion

In conclusion, our findings as shown in Fig. 7 are the first 
to reveal that Ech effectively protects the lungs from oxida-
tive stress and inflammation and that this is highly depend-
ent on restoring the balance between ROS and antioxidants, 
improving airway remodeling, reducing mucus secretion 
and goblet cells hyperplasia, and suppressing Th2-related 
cytokines as well as IgE and OVA-specific IgE production. 
Moreover, Ech administration inhibited the phosphorylation 
of NF-κB P65. These findings imply that it may be an effec-
tive and helpful treatment for allergic asthma.
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