Publications

Export 5 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D [E] F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
E
Elnashar, A., H. Zeng, B. Wu, A. A. Fenta, M. Nabil, and R. Duerler, "Soil erosion assessment in the Blue Nile Basin driven by a novel RUSLE-GEE framework", Science of The Total Environment, vol. 793, pp. 148466, 2021. AbstractWebsite

Assessment of soil loss and understanding its major drivers are essential to implement targeted management interventions. We have proposed and developed a Revised Universal Soil Loss Equation framework fully implemented in the Google Earth Engine cloud platform (RUSLE-GEE) for high spatial resolution (90 m) soil erosion assessment. Using RUSLE-GEE, we analyzed the soil loss rate for different erosion levels, land cover types, and slopes in the Blue Nile Basin. The results showed that the mean soil loss rate is 39.73, 57.98, and 6.40 t ha−1 yr−1 for the entire Blue Nile, Upper Blue Nile, and Lower Blue Nile Basins, respectively. Our results also indicated that soil protection measures should be implemented in approximately 27% of the Blue Nile Basin, as these areas face a moderate to high risk of erosion (>10 t ha−1 yr−1). In addition, downscaling the Tropical Rainfall Measuring Mission (TRMM) precipitation data from 25 km to 1 km spatial resolution significantly impacts rainfall erosivity and soil loss rate. In terms of soil erosion assessment, the study showed the rapid characterization of soil loss rates that could be used to prioritize erosion mitigation plans to support sustainable land resources and tackle land degradation in the Blue Nile Basin.

Elnashar, A., L. Wang, B. Wu, W. Zhu, and H. Zeng, "Synthesis of global actual evapotranspiration from 1982 to 2019", Earth System Science Data, vol. 13, issue 2: Copernicus GmbH, pp. 447-480, 2021. AbstractWebsite

As a linkage among water, energy, and carbon cycles, global actual evapotranspiration (ET) plays an essential role in agriculture, water resource management, and climate change. Although it is difficult to estimate ET over a large scale and for a long time, there are several global ET datasets available with uncertainty associated with various assumptions regarding their algorithms, parameters, and inputs. In this study, we propose a long-term synthesized ET product at a kilometer spatial resolution and monthly temporal resolution from 1982 to 2019. Through a site-pixel evaluation of 12 global ET products over different time periods, land surface types, and conditions, the high-performing products were selected for the synthesis of the new dataset using a high-quality flux eddy covariance (EC) covering the entire globe. According to the study results, Penman–Monteith–Leuning (PML), the operational Simplified Surface Energy Balance (SSEBop), the Moderate Resolution Imaging Spectroradiometer (MODIS, MOD16A2105), and the Numerical Terradynamic Simulation Group (NTSG) ET products were chosen to create the synthesized ET set. The proposed product agreed well with flux EC ET over most of the all comparison levels, with a maximum relative mean error (RME) of 13.94 mm (17.13 %) and a maximum relative root mean square error (RRMSE) of 38.61 mm (47.45 %). Furthermore, the product performed better than local ET products over China, the United States, and the African continent and presented an ET estimation across all land cover classes. While no product can perform best in all cases, the proposed ET can be used without looking at other datasets and performing further assessments. Data are available on the Harvard Dataverse public repository through the following Digital Object Identifier (DOI): https://doi.org/10.7910/DVN/ZGOUED (Elnashar et al., 2020), as well as on the Google Earth Engine (GEE) application through this link: https://elnashar.users.earthengine.app/view/synthesizedet (last access: 21 January 2021).

Elnashar, A., H. Zeng, B. Wu, T. G. Gebremicael, and K. Marie, "Assessment of environmentally sensitive areas to desertification in the Blue Nile Basin driven by the MEDALUS-GEE framework", Science of The Total Environment, vol. 815, issue 1, pp. 152925, 2022. AbstractWebsite

Assessing environmentally sensitive areas (ESA) to desertification and understanding their primary drivers are necessary for applying targeted management practices to combat land degradation at the basin scale. We have developed the MEditerranean Desertification And Land Use framework in the Google Earth Engine cloud platform (MEDALUS-GEE) to map and assess the ESA index at 300 m grids in the Blue Nile Basin (BNB). The ESA index was derived from elaborating 19 key indicators representing soil, climate, vegetation, and management through the geometric mean of their sensitivity scores. The results showed that 43.4%, 28.8%, and 70.4% of the entire BNB, Upper BNB, and Lower BNB, respectively, are highly susceptible to desertification, indicating appropriate land and water management measures should be urgently implemented. Our findings also showed that the main land degradation drivers are moderate to intensive cultivation across the BNB, high slope gradient and water erosion in the Upper BNB, and low soil organic matter and vegetation cover in the Lower BNB. The study presented an integrated monitoring and assessment framework for understanding desertification processes to help achieve land-related sustainable development goals.

Elnashar, A., H. Zeng, B. Wu, N. Zhang, F. Tian, M. Zhang, W. Zhu, N. Yan, Z. Chen, and Z. Sun, "Downscaling TRMM Monthly Precipitation Using Google Earth Engine and Google Cloud Computing", Remote Sensing, vol. 12, issue 23: Multidisciplinary Digital Publishing Institute, pp. 3860, 2020. AbstractWebsite

Accurate precipitation data at high spatiotemporal resolution are critical for land and water management at the basin scale. We proposed a downscaling framework for Tropical Rainfall Measuring Mission (TRMM) precipitation products through integrating Google Earth Engine (GEE) and Google Colaboratory (Colab). Three machine learning methods, including Gradient Boosting Regressor (GBR), Support Vector Regressor (SVR), and Artificial Neural Network (ANN) were compared in the framework. Three vegetation indices (Normalized Difference Vegetation Index, NDVI; Enhanced Vegetation Index, EVI; Leaf Area Index, LAI), topography, and geolocation are selected as geospatial predictors to perform the downscaling. This framework can automatically optimize the models’ parameters, estimate features’ importance, and downscale the TRMM product to 1 km. The spatial downscaling of TRMM from 25 km to 1 km was achieved by using the relationships between annual precipitations and annually-averaged vegetation index. The monthly precipitation maps derived from the annual downscaled precipitation by disaggregation. According to validation in the Great Mekong upstream region, the ANN yielded the best performance when simulating the annual TRMM precipitation. The most sensitive vegetation index for downscaling TRMM was LAI, followed by EVI. Compared with existing downscaling methods, the proposed framework for downscaling TRMM can be performed online for any given region using a wide range of machine learning tools and environmental variables to generate a precipitation product with high spatiotemporal resolution

Elnashar, A., M. Abbas, H. Sobhy, and M. Shahba, "Crop Water Requirements and Suitability Assessment in Arid Environments: A New Approach", Agronomy, vol. 11, issue 2, pp. 260, 2021. AbstractWebsite

Efficient land and water management require the accurate selection of suitable crops that are compatible with soil and crop water requirements (CWR) in a given area. In this study, twenty soil profiles are collected to represent the soils of the study area. Physical and chemical properties of soil, in addition to irrigation water quality, provided data are utilized by the Agriculture Land Evaluation System for Arid and semi-arid regions (ALES-Arid) to determine crop suitability. University of Idaho Ref-ET software is used to calculate CWR from weather data while the Surface Energy Balance Algorithms for Land Model (SEBAL) is utilized to estimate CWR from remote sensing data. The obtained results show that seasonal weather-based CWR of the most suitable field crops (S1 and S2 classes) ranges from 804 to 1625 mm for wheat and berssem, respectively, and ranges from 778 to 993 mm in the vegetable crops potato and watermelon, respectively, under surface irrigation. Mean daily satellite-based CWR are predicted based on SEBAL ranges between 4.79 and 3.62 mm in Toshka and Abu Simbel areas respectively. This study provides a new approach for coupling ALES-Arid, Ref-ET and SEBAL models to facilitate the selection of suitable crops and offers an excellent source for predicting CWR in arid environments. The findings of this research will help in managing the future marginal land reclamation projects in arid and semi-arid areas of the world.