Publications

Export 12 results:
Sort by: Author Title Type [ Year  (Desc)]
2024
Shahror, R. A., C. A. Morris, A. A. Mohammed, M. Wild, B. Zaman, C. D. Mitchell, P. H. Phillips, N. J. Rusch, E. shosha, and A. Y. Fouda, "Role of myeloid cells in ischemic retinopathies: recent advances and unanswered questions.", Journal of neuroinflammation, vol. 21, issue 1, pp. 65, 2024. Abstract

Myeloid cells including microglia and macrophages play crucial roles in retinal homeostasis by clearing cellular debris and regulating inflammation. These cells are activated in several blinding ischemic retinal diseases including diabetic retinopathy, where they may exert both beneficial and detrimental effects on neurovascular function and angiogenesis. Myeloid cells impact the progression of retinal pathologies and recent studies suggest that targeting myeloid cells is a promising therapeutic strategy to mitigate diabetic retinopathy and other ischemic retinal diseases. This review summarizes the recent advances in our understanding of the role of microglia and macrophages in retinal diseases and focuses on the effects of myeloid cells on neurovascular injury and angiogenesis in ischemic retinopathies. We highlight gaps in knowledge and advocate for a more detailed understanding of the role of myeloid cells in retinal ischemic injury to fully unlock the potential of targeting myeloid cells as a therapeutic strategy for retinal ischemia.

2023
shosha, E., R. A. Shahror, C. A. Morris, Z. Xu, R. Lucas, M. E. McGee-Lawrence, N. J. Rusch, R. B. Caldwell, and A. Y. Fouda, "The arginase 1/ornithine decarboxylase pathway suppresses HDAC3 to ameliorate the myeloid cell inflammatory response: implications for retinal ischemic injury.", Cell death & disease, vol. 14, issue 9, pp. 621, 2023. Abstract

The enzyme arginase 1 (A1) hydrolyzes the amino acid arginine to form L-ornithine and urea. Ornithine is further converted to polyamines by the ornithine decarboxylase (ODC) enzyme. We previously reported that deletion of myeloid A1 in mice exacerbates retinal damage after ischemia/reperfusion (IR) injury. Furthermore, treatment with A1 protects against retinal IR injury in wild-type mice. PEG-A1 also mitigates the exaggerated inflammatory response of A1 knockout (KO) macrophages in vitro. Here, we sought to identify the anti-inflammatory pathway that confers macrophage A1-mediated protection against retinal IR injury. Acute elevation of intraocular pressure was used to induce retinal IR injury in mice. A multiplex cytokine assay revealed a marked increase in the inflammatory cytokines interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) in the retina at day 5 after IR injury. In vitro, blocking the A1/ODC pathway augmented IL-1β and TNF-α production in stimulated macrophages. Furthermore, A1 treatment attenuated the stimulated macrophage metabolic switch to a pro-inflammatory glycolytic phenotype, whereas A1 deletion had the opposite effect. Screening for histone deacetylases (HDACs) which play a role in macrophage inflammatory response showed that A1 deletion or ODC inhibition increased the expression of HDAC3. We further showed the involvement of HDAC3 in the upregulation of TNF-α but not IL-1β in stimulated macrophages deficient in the A1/ODC pathway. Investigating HDAC3 KO macrophages showed a reduced inflammatory response and a less glycolytic phenotype upon stimulation. In vivo, HDAC3 co-localized with microglia/macrophages at day 2 after IR in WT retinas and was further increased in A1-deficient retinas. Collectively, our data provide initial evidence that A1 exerts its anti-inflammatory effect in macrophages via ODC-mediated suppression of HDAC3 and IL-1β. Collectively we propose that interventions that augment the A1/ODC pathway and inhibit HDAC3 may confer therapeutic benefits for the treatment of retinal ischemic diseases.

Xiao, W., R. A. Shahror, C. A. Morris, R. B. Caldwell, and A. Y. Fouda, "Multi-color Flow Cytometry Protocol to Characterize Myeloid Cells in Mouse Retina Research.", Bio-protocol, vol. 13, issue 16, pp. e4745, 2023. Abstract

Myeloid cells, specifically microglia and macrophages, are activated in retinal diseases and can improve or worsen retinopathy outcomes based on their inflammatory phenotype. However, assessing the myeloid cell response after retinal injury in mice remains challenging due to the small tissue size and the challenges of distinguishing microglia from infiltrating macrophages. In this protocol paper, we describe a flow cytometry-based protocol to assess retinal microglia/macrophage and their inflammatory phenotype after injury. The protocol is amenable to the incorporation of other markers of interest to other researchers. Key features This protocol describes a flow cytometry-based method to analyze the myeloid cell response in retinopathy mouse models. The protocol can distinguish between microglia- and monocyte-derived macrophages. It can be modified to incorporate markers of interest. We show representative results from three different retinopathy models, namely ischemia-reperfusion injury, endotoxin-induced uveitis, and oxygen-induced retinopathy.

2022
Fouda, A. Y., H. A. Ahmed, B. Pillai, A. Kozak, T. Hardigan, A. Ergul, S. C. Fagan, and T. Ishrat, "Contralesional angiotensin type 2 receptor activation contributes to recovery in experimental stroke.", Neurochemistry international, vol. 158, pp. 105375, 2022. Abstract

We and others have previously shown that angiotensin II receptor type 2 receptor (AT2R) is upregulated in the contralesional hemisphere after stroke in normoglycemic Wistar rats. In this study, we examined the expression of AT2R in type 2 diabetic Goto-Kakizaki (GK) rats and control Wistars after stroke. We also tested the contribution of the contralesional AT2R in recovery after stroke through a specific knockdown of the AT2R in this hemisphere only. Two experiments were conducted. In the first experiment, GK rats were subjected to middle cerebral artery occlusion (MCAO) and treated with the angiotensin II receptor type 1 receptor (AT1R) blocker candesartan or saline at reperfusion. Stroke outcomes, as well as AT2R expression, were examined and compared to control Wistars at 24 h. In the second experiment, localized AT2R knockdown was achieved through intrastriatal injection of short hairpin RNA (shRNA) lentiviral particles or non-targeting control into the left-brain hemisphere of Wistar rats. After 14 days, rats were subjected to right MCAO and treated with the AT2R agonist, Compound 21 (C21), or saline for 7 days. Behavioral outcomes were assessed for up to 10 days. In the first experiment, stroke reduced the expression of AT2R in GK rats. Candesartan treatment failed to improve the neurobehavioral outcomes, preserve vascular integrity or reduce oxidative/nitrative stress or apoptotic markers at 24 h post stroke in these animals. In the second experiment, contralesional AT2R knockdown reduced the C21-mediated functional recovery after stroke. In conclusion, contralesional AT2R upregulation after stroke is blunted in diabetic rats which show reduced sensitivity to post-stroke candesartan treatment. Contralesional AT2R could be involved in C21-mediated functional recovery after stroke.

shosha, E., L. Qin, T. Lemtalsi, S. A. Zaidi, M. Rojas, Z. Xu, R. W. Caldwell, R. B. Caldwell, and A. Y. Fouda, "Investigation of Retinal Metabolic Function in Type 1 Diabetic Akita Mice.", Frontiers in cardiovascular medicine, vol. 9, pp. 900640, 2022. Abstract

Diabetic retinopathy (DR) is the leading cause of vision loss in working age adults. Understanding the retinal metabolic response to circulating high glucose levels in diabetic patients is critical for development of new therapeutics to treat DR. Measuring retinal metabolic function using the Seahorse analyzer is a promising technique to investigate the effect of hyperglycemia on retinal glycolysis and mitochondrial respiration. Here, we analyzed the retinal metabolic function in young and old diabetic and control mice. We also compared the expression of key glycolytic enzymes between the two groups. The Seahorse XF analyzer was used to measure the metabolic function of retina explants from young and old type 1 diabetic Akita ( ) mice and their control littermates. Rate-limiting glycolytic enzymes were analyzed in retina lysates from the two age groups by Western blotting. Retinas from young adult Akita mice showed a decreased glycolytic response as compared to control littermates. However, this was not observed in the older mice. Western blotting analysis showed decreased expression of the glycolytic enzyme PFKFB3 in the young Akita mice retinas. Measurement of the oxygen consumption rate showed no difference in retinal mitochondrial respiration between Akita and WT littermates under normal glucose conditions despite mitochondrial fragmentation in the Akita retinas as examined by electron microscopy. However, Akita mice retinas showed decreased mitochondrial respiration under glucose-free conditions. In conclusion, diabetic retinas display a decreased glycolytic response during the early course of diabetes which is accompanied by a reduction in PFKFB3. Diabetic retinas exhibit decreased mitochondrial respiration under glucose deprivation.

Fouda, A. Y., W. Eldahshan, Z. Xu, T. Lemtalsi, E. shosha, S. A. Zaidi, A. A. Abdelrahman, P. N. - M. Cheng, P. S. Narayanan, W. R. Caldwell, et al., "Preclinical investigation of Pegylated arginase 1 as a treatment for retina and brain injury.", Experimental neurology, vol. 348, pp. 113923, 2022. Abstract

Arginase 1 (A1) is the enzyme that hydrolyzes the amino acid, L-arginine, to ornithine and urea. We have previously shown that A1 deletion worsens retinal ischemic injury, suggesting a protective role of A1. In this translational study, we aimed to study the utility of systemic pegylated A1 (PEG-A1, recombinant human arginase linked to polyethylene glycol) treatment in mouse models of acute retinal and brain injury. Cohorts of WT mice were subjected to retinal ischemia-reperfusion (IR) injury, traumatic optic neuropathy (TON) or brain cerebral ischemia via middle cerebral artery occlusion (MCAO) and treated with intraperitoneal injections of PEG-A1 or vehicle (PEG only). Drug penetration into retina and brain tissues was measured by western blotting and immunolabeling for PEG. Neuroprotection was measured in a blinded fashion by quantitation of NeuN (neuronal marker) immunolabeling of retina flat-mounts and brain infarct area using triphenyl tetrazolium chloride (TTC) staining. Furthermore, ex vivo retina explants and in vitro retina neuron cultures were subjected to oxygen-glucose deprivation (OGD) followed by reoxygenation (R) and treated with PEG-A1. PEG-A1 given systemically did not cross the intact blood-retina/brain barriers in sham controls but reached the retina and brain after injury. PEG-A1 provided neuroprotection after retinal IR injury, TON and cerebral ischemia. PEG-A1 treatment was also neuroprotective in retina explants subjected to OGD/R but did not improve survival in retinal neuronal cultures exposed to OGD/R. In summary, systemic PEG-A1 administration is neuroprotective and provides an excellent route to deliver the drug to the retina and the brain after acute injury.

Fouda, A. Y., Z. Xu, J. Suwanpradid, M. Rojas, E. shosha, T. Lemtalsi, C. Patel, J. Xing, S. A. Zaidi, W. Zhi, et al., "Targeting proliferative retinopathy: Arginase 1 limits vitreoretinal neovascularization and promotes angiogenic repair.", Cell death & disease, vol. 13, issue 8, pp. 745, 2022. Abstract

Current therapies for treatment of proliferative retinopathy focus on retinal neovascularization (RNV) during advanced disease and can trigger adverse side-effects. Here, we have tested a new strategy for limiting neurovascular injury and promoting repair during early-stage disease. We have recently shown that treatment with a stable, pegylated drug form of the ureohydrolase enzyme arginase 1 (A1) provides neuroprotection in acute models of ischemia/reperfusion injury, optic nerve crush, and ischemic stroke. Now, we have determined the effects of this treatment on RNV, vascular repair, and retinal function in the mouse oxygen-induced retinopathy (OIR) model of retinopathy of prematurity (ROP). Our studies in the OIR model show that treatment with pegylated A1 (PEG-A1), inhibits pathological RNV, promotes angiogenic repair, and improves retinal function by a mechanism involving decreased expression of TNF, iNOS, and VEGF and increased expression of FGF2 and A1. We further show that A1 is expressed in myeloid cells and areas of RNV in retinal sections from mice with OIR and human diabetic retinopathy (DR) patients and in blood samples from ROP patients. Moreover, studies using knockout mice with hemizygous deletion of A1 show worsened RNV and retinal injury, supporting the protective role of A1 in limiting the OIR-induced pathology. Collectively, A1 is critically involved in reparative angiogenesis and neuroprotection in OIR. Pegylated A1 may offer a novel therapy for limiting retinal injury and promoting repair during proliferative retinopathy.

2021
shosha, E., A. Y. Fouda, T. Lemtalsi, S. Haigh, D. Fulton, A. Ibrahim, M. Al-Shabrawey, W. R. Caldwell, and R. B. Caldwell, "Endothelial arginase 2 mediates retinal ischemia/reperfusion injury by inducing mitochondrial dysfunction.", Molecular metabolism, vol. 53, pp. 101273, 2021. Abstract

OBJECTIVE: Retinal ischemic disease is a major cause of vision loss. Current treatment options are limited to late-stage diseases, and the molecular mechanisms of the initial insult are not fully understood. We have previously shown that the deletion of the mitochondrial arginase isoform, arginase 2 (A2), limits neurovascular injury in models of ischemic retinopathy. Here, we investigated the involvement of A2-mediated alterations in mitochondrial dynamics and function in the pathology.

METHODS: We used wild-type (WT), global A2 knockout (A2KO-) mice, cell-specific A2 knockout mice subjected to retinal ischemia/reperfusion (I/R), and bovine retinal endothelial cells (BRECs) subjected to an oxygen-glucose deprivation/reperfusion (OGD/R) insult. We used western blotting to measure levels of cell stress and death markers and the mitochondrial fragmentation protein, dynamin related protein 1 (Drp1). We also used live cell mitochondrial labeling and Seahorse XF analysis to evaluate mitochondrial fragmentation and function, respectively.

RESULTS: We found that the global deletion of A2 limited the I/R-induced disruption of retinal layers, fundus abnormalities, and albumin extravasation. The specific deletion of A2 in endothelial cells was protective against I/R-induced neurodegeneration. The OGD/R insult in BRECs increased A2 expression and induced cell stress and cell death, along with decreased mitochondrial respiration, increased Drp1 expression, and mitochondrial fragmentation. The overexpression of A2 in BREC also decreased mitochondrial respiration, promoted increases in the expression of Drp1, mitochondrial fragmentation, and cell stress and resulted in decreased cell survival. In contrast, the overexpression of the cytosolic isoform, arginase 1 (A1), did not affect these parameters.

CONCLUSIONS: This study is the first to show that A2 in endothelial cells mediates retinal ischemic injury through a mechanism involving alterations in mitochondrial dynamics and function.

2018
Fouda, A. Y., Z. Xu, E. shosha, T. Lemtalsi, J. Chen, H. A. Toque, R. Tritz, X. Cui, B. K. Stansfield, Y. Huo, et al., "Arginase 1 promotes retinal neurovascular protection from ischemia through suppression of macrophage inflammatory responses.", Cell death & disease, vol. 9, issue 10, pp. 1001, 2018 Sep 25. Abstract

The lack of effective therapies to limit neurovascular injury in ischemic retinopathy is a major clinical problem. This study aimed to examine the role of ureohydrolase enzyme, arginase 1 (A1), in retinal ischemia-reperfusion (IR) injury. A1 competes with nitric oxide synthase (NOS) for their common substrate L-arginine. A1-mediated L-arginine depletion reduces nitric oxide (NO) formation by NOS leading to vascular dysfunction when endothelial NOS is involved but prevents inflammatory injury when inducible NOS is involved. Studies were performed using wild-type (WT) mice, global A1 knockout (KO), endothelial-specific A1 KO, and myeloid-specific A1 KO mice subjected to retinal IR injury. Global as well as myeloid-specific A1 KO mice showed worsened IR-induced neuronal loss and retinal thinning. Deletion of A1 in endothelial cells had no effect, while treatment with PEGylated (PEG) A1 improved neuronal survival in WT mice. In addition, A1 KO mice showed worsened vascular injury manifested by increased acellular capillaries. Western blotting analysis of retinal tissue showed increased inflammatory and necroptotic markers with A1 deletion. In vitro experiments showed that macrophages lacking A1 exhibit increased inflammatory response upon LPS stimulation. PEG-A1 treatment dampened this inflammatory response and decreased the LPS-induced metabolic reprogramming. Moreover, intravitreal injection of A1 KO macrophages or systemic macrophage depletion with clodronate liposomes increased neuronal loss after IR injury. These results demonstrate that A1 reduces IR injury-induced retinal neurovascular degeneration via dampening macrophage inflammatory responses. Increasing A1 offers a novel strategy for limiting neurovascular injury and promoting macrophage-mediated repair.

Ahmed, H. A., T. Ishrat, B. Pillai, A. Y. Fouda, M. A. Sayed, W. Eldahshan, J. L. Waller, A. Ergul, and S. C. Fagan, "RAS modulation prevents progressive cognitive impairment after experimental stroke: a randomized, blinded preclinical trial.", Journal of neuroinflammation, vol. 15, issue 1, pp. 229, 2018 Aug 13. Abstract

BACKGROUND: With the aging population, the prevalence and incidence of cerebrovascular disease will continue to rise, as well as the number of individuals with vascular cognitive impairment/dementia (VCID). No specific FDA-approved treatments for VCID exist. Although clinical evidence supports that angiotensin receptor blockers (ARBs) prevent cognitive decline in older adults, whether ARBs have a similar effect on VCID after stroke is unknown. Moreover, these agents reduce BP, which is undesirable in the acute stroke period, so we believe that giving C21 in this acute phase or delaying ARB administration would enable us to achieve the neurovascular benefits without the risk of unintended and potentially dangerous, acute BP lowering.

METHODS: The aim of our study was to determine the impact of candesartan (ARB) or compound-21 (an angiotensin type 2 receptor--AT2R--agonist) on long-term cognitive function post-stroke, in spontaneously hypertensive rats (SHRs). We hypothesized that AT2R stimulation, either directly with C21, or indirectly by blocking the angiotensin type 1 receptor (AT1R) with candesartan, initiated after stroke, would reduce cognitive impairment. Animals were subjected to a 60-min transient middle cerebral artery occlusion and randomly assigned to either saline/C21 monotherapy, for the full study duration (30 days), or given sequential therapy starting with saline/C21 (7 days) followed by candesartan for the remainder of the study (21 days). Outcome measures included sensorimotor/cognitive-function, amyloid-β determination, and histopathologic analyses.

RESULTS: Treatment with RAS modulators effectively preserved cognitive function, reduced cytotoxicity, and prevented chronic-reactive microgliosis in SHRs, post-stroke. These protective effects were apparent even when treatment was delayed up to 7 days post-stroke and were independent of blood pressure and β-amyloid accumulation.

CONCLUSION: Collectively, our findings demonstrate that RAS modulators effectively prevent cognitive impairment after stroke, even when treatment is delayed.

shosha, E., Z. Xu, P. S. Narayanan, T. Lemtalsi, A. Y. Fouda, M. Rojas, J. Xing, D. Fulton, W. R. Caldwell, and R. B. Caldwell, "Mechanisms of Diabetes-Induced Endothelial Cell Senescence: Role of Arginase 1.", International journal of molecular sciences, vol. 19, issue 4, 2018 Apr 17. Abstract

We have recently found that diabetes-induced premature senescence of retinal endothelial cells is accompanied by NOX2-NADPH oxidase-induced increases in the ureohydrolase enzyme arginase 1 (A1). Here, we used genetic strategies to determine the specific involvement of A1 in diabetes-induced endothelial cell senescence. We used A1 knockout mice and wild type mice that were rendered diabetic with streptozotocin and retinal endothelial cells (ECs) exposed to high glucose or transduced with adenovirus to overexpress A1 for these experiments. ABH [2(S)-Amino-6-boronohexanoic acid] was used to inhibit arginase activity. We used Western blotting, immunolabeling, quantitative PCR, and senescence associated β-galactosidase (SA β-Gal) activity to evaluate senescence. Analyses of retinal tissue extracts from diabetic mice showed significant increases in mRNA expression of the senescence-related proteins p16, p21, and p53 when compared with non-diabetic mice. SA β-Gal activity and p16 immunoreactivity were also increased in retinal vessels from diabetic mice. A1 gene deletion or pharmacological inhibition protected against the induction of premature senescence. A1 overexpression or high glucose treatment increased SA β-Gal activity in cultured ECs. These results demonstrate that A1 is critically involved in diabetes-induced senescence of retinal ECs. Inhibition of arginase activity may therefore be an effective therapeutic strategy to alleviate diabetic retinopathy by preventing premature senescence.

2017
Fouda, A. Y., A. S. Newsome, S. Spellicy, J. L. Waller, W. Zhi, D. C. Hess, A. Ergul, D. J. Edwards, S. C. Fagan, and J. A. Switzer, "Minocycline in Acute Cerebral Hemorrhage: An Early Phase Randomized Trial.", Stroke, vol. 48, issue 10, pp. 2885-2887, 2017 10. Abstract

BACKGROUND AND PURPOSE: Minocycline is under investigation as a neurovascular protective agent for stroke. This study evaluated the pharmacokinetic, anti-inflammatory, and safety profile of minocycline after intracerebral hemorrhage.

METHODS: This study was a single-site, randomized controlled trial of minocycline conducted from 2013 to 2016. Adults ≥18 years with primary intracerebral hemorrhage who could have study drug administered within 24 hours of onset were included. Patients received 400 mg of intravenous minocycline, followed by 400 mg minocycline oral daily for 4 days. Serum concentrations of minocycline after the last oral dose and biomarkers were sampled to determine the peak concentration, half-life, and anti-inflammatory profile.

RESULTS: A total of 16 consecutive eligible patients were enrolled, with 8 randomized to minocycline. Although the literature supports a time to peak concentration (T) of 1 hour for oral minocycline, the T was estimated to be at least 6 hours in this cohort. The elimination half-life (available on 7 patients) was 17.5 hours (SD±3.5). No differences were observed in inflammatory biomarkers, hematoma volume, or perihematomal edema. Concentrations remained at neuroprotective levels (>3 mg/L) throughout the dosing interval in 5 of 7 patients.

CONCLUSIONS: In intracerebral hemorrhage, a 400 mg dose of minocycline was safe and achieved neuroprotective serum concentrations. However, oral administration led to delayed absorption in these critically ill patients and should not be used when rapid, high concentrations are desired. Given the safety and pharmacokinetic profile of minocycline in intracerebral hemorrhage and promising data in the treatment of ischemic stroke, intravenous minocycline is an excellent candidate for a prehospital treatment trial.

CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01805895.

Tourism