Export 2 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
Fahmy, A. M., M. Hassan, D. A. El-Setouhy, S. A. Tayel, and A. M. Al-mahallawi, "Statistical optimization of hyaluronic acid enriched ultradeformable elastosomes for ocular delivery of voriconazole via Box-Behnken design: characterization and evaluation.", Drug delivery, vol. 28, issue 1, pp. 77-86, 2021. Abstract

Voriconazole (VCZ) is a well-known broad spectrum triazole antifungal, mainly used orally and intravenously. The study aimed to formulate VCZ into ultradeformable elastosomes for the topical treatment of ocular fungal keratitis. Different formulae were prepared using a modified ethanol injection method, employing a 3 Box-Behnken design. They were characterized by measuring their entrapment efficiency (EE%), particle size (PS), polydispersity index (PDI) and zeta potential (ZP). The optimized formula was subjected to further investigations and evaluation studies. The prepared vesicles had satisfactory EE%, PS, PDI and ZP values. The numerical optimization process suggested an optimal elastosomal formula (OE) composed of phosphatidyl choline and brij S100 at the weight ratio of 3.62: 1, 0.25%w/v hyaluronic acid and 5% (percentage from phosphatidyl choline/brij mixture) polyvinyl alcohol. It had high EE (72.6%), acceptable PS and PDI (362.4 nm and 0.25, respectively) and highly negative ZP of -41.7 mV. OE exhibited higher elasticity than conventional liposomes, with acceptable stability for three months. Transmission electron microscopy demonstrated the spherical morphology of vesicles with an external transparent coat of Hyaluronic acid. OE was expected to cause no ocular irritation or blurring in vision as reflected by pH and refractive index measurements. The histopathological study revealed the safety of OE for ocular use. The fungal susceptibility testing using demonstrated the superiority of OE to VCZ suspension, with greater and more durable growth inhibition. Therefore, OE can be regarded as a promising formula, achieving both safety and efficacy.

rofida albash, A. M. Fahmy, M. I. A. Hamed, K. M. Darwish, and R. M. El-Dahmy, "Spironolactone hyaluronic acid enriched cerosomes (HAECs) for topical management of hirsutism: studies, statistical optimization, and studies.", Drug delivery, vol. 28, issue 1, pp. 2289-2300, 2021. Abstract

Spironolactone (SP) is a potassium sparing diuretic with antiandrogenic properties. This study aimed at formulating SP into hyaluronic acid enriched cerosomes (HAECs) for topical management of hirsutism. HAECs were prepared by ethanol injection method, according to D-optimal design, after a proper study. HAECs were evaluated by measuring their entrapment efficiency (EE%), particle size (PS), and polydispersity index (PDI). Optimal hyaluronic acid enriched cerosomes (OHAECs) were subjected to further and and studies. The study concluded better interactions between SP and phosphatidyl choline in presence of hyaluronic acid (HA) and high stability of their binding in water. The prepared HAECs had acceptable EE%, PS, and PDI values. The statistical optimization process suggested OHAEC containing 10.5 mg ceramide III and 15 mg HA, utilizing Kolliphor RH40. OHAEC had EE% and PS of 89.3 ± 0.3% and 261.8 ± 7.0 nm, respectively. OHAEC was stable for up to 3 months. It also showed a mixed tubular and vesicular appearance under transmission electron microscope. The and studies concluded better skin deposition and accumulation of SP from OHAEC. The histopathological study demonstrated the safety of OHAEC for topical application. Therefore, OHAEC could be considered as effective system for topical application of SP to manage hirsutism, with prolonged action, coupled with minimized side effects.