
International Journal of Contemporary Mathematical Sciences 

Vol. 11, 2016, no. 3, 119 - 129 

HIKARI Ltd,  www.m-hikari.com 

http://dx.doi.org/10.12988/ijcms.2016.51162 

 

 

Bayesian Inference from the Kumaraswamy- 

 

Weibull Distribution with Applications  

 

to Real Data  
 

 

R. M. Mandouh 

 

Institute of Statistical Studies and Research, Cairo University, Egypt 

 
   Copyright © 2015 R. M. Mandouh. This article is distributed under the Creative Commons 

Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 

provided the original work is properly cited. 

 

Abstract 

 

In this article, we introduce a Bayesian analysis for the Kumaraswamy-

Weibull (Kum-W) distribution. Approximate Bayes estimates are obtained under 

the assumptions of non-informative priors using the Gibbs sampling procedure. 

This procedure allows for generating samples from posterior distributions. Also, 

using Bayesian framework, the predictive density for a single future response, a 

bivariate future response, and several future responses are derived. The predictive 

means, standard deviations, highest predictive density (HPD) intervals, and the 

shape characteristics for a single future response are determined. Finally, 

applications to real data sets are utilized to illustrate the potentiality of the 

Bayesian analysis and the predictive results. 

 

Keywords: Kumaraswamy-Weibull (Kum-W) distribution; Bayesian approach; 

predictive inference 

 

1. Introduction 
 

A suitable parametric model is often of interest in the analysis of survival 

data, as it provides insight into characteristics of failure times and hazard 

functions that may not be available with non-parametric methods. The Weibull 

distribution is one of the most commonly used families for modeling such data. 

However, only monotonically increasing and decreasing hazard functions can be 

generated from the classic two-parameter Weibull distribution. As such, this two- 
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parameter model is inadequate when the true hazard shape is of unimodal or has 

bathtub nature. Many extensions of the Weibull distribution have been proposed 

to enhance its capability to fit diverse life time data. Here, we will discuss one of 

these extensions which is called Kumaraswamy-Weibull distribution. A review of 

this distribution will be discussed in section 2.  

 

The Bayesian predictive approach is growing in popularity. New practical 

applications in the fields of health sciences, social sciences, and environmental 

sciences, among others are appearing frequently. This approach, which is used for 

the design and analysis of survival research studies in the health sciences, is now 

widely used to reduce healthcare cost and to successfully allocate healthcare 

resources. Predictive inference has been discussed by Khan et al. (2003), Khan 

(2012), Khan et al. (2013), among others. Additional applications of the Bayesian 

approach to predictive inference for breast cancer survival data have been 

discussed by Khan et al. (2014a) and Khan et al. (2014b). 

 

In this article, a review of the Kumaraswamy-Weibull Distribution will be 

discussed in section 2, approximate Bayes estimates are obtained using the Gibbs 

sampling procedure in section 3. In section 4 the predictive density for a single 

future response, a bivariate future response, and several future responses are 

derived. Finally, two real data sets are considered in section 5 to illustrate the 

potentiality of the Bayesian analysis and the predictive results. 

 

2. The Kumaraswamy-Weibull Distribution 
 

Starting with the Kumaraswamy’s distribution (Kum distribution) on the 

interval [0, 1] which has the cdf: 𝐹(𝑥) = 1 − {1 − 𝑥𝑎}𝑏 , 𝑎 > 0, 𝑏 > 0 as an 

alternative to the beta distribution in generated-beta distributions, Cordeiro and de 

Castro (2011) introduced a class of Kum generalized (Kum-G) distributions. From 

an arbitrary cdf 𝐺(𝑥), the cdf 𝐹(𝑥) of the Kum-G distribution is defined by 

 

                                  𝐹(𝑥) = 1 − {1 − 𝐺(𝑥)𝑎}𝑏 ,                                              (2.1)                                                                                                                                                                                                                  

where 𝑎 > 0 and 𝑏 > 0 are two additional parameters whose role is to introduce 

skewness and to vary tail weights and the corresponding pdf of this family of 

distributions has a very simple form 

                                𝑓(𝑥) = 𝑎𝑏𝑔(𝑥)𝐺(𝑥)𝑎−1{1 − 𝐺(𝑥)𝑎}𝑏−1.                          (2.2) 

Note that: the basic difference (except for a scale multiplier) between the pdf of 

Kum-G distributions and the pdf of the beta-G distributions is the power of G(x) 

inside the braces and for 𝑏 = 1 both densities are identical. By taking the cdf 

𝐺(𝑥) = 1 − 𝑒(𝜆𝑥)
𝑐
 of the Weibull distribution with shape parameter c > 0 and 

scale parameter λ > 0, the cdf and pdf of this distribution are obtained from 

equations (2.1) and (2.2) as 

 

            𝐹(𝑥) = 1 − {1 − [1 − 𝑒−(𝜆𝑥)
𝑐
]
𝑎
}
𝑏

,                                                       (2.3) 
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and 

        𝑓(𝑥) = 𝑎𝑏𝑐𝜆𝑐𝑥𝑐−1𝑒−(𝜆𝑥)
𝑐
[1 − 𝑒−(𝜆𝑥)

𝑐
]
𝑎−1

{1 − [1 − 𝑒−(𝜆𝑥)
𝑐
]
𝑎
}
𝑏−1

       (2.4) 

 

respectively. 

The hazard rate function for Kum-W distribution is  

 

ℎ(𝑥) =
𝑎𝑏𝑐𝜆𝑐𝑥𝑐−1𝑒−(𝜆𝑥)

𝑐
[1−𝑒−(𝜆𝑥)

𝑐
]
𝑎−1

1−[1−𝑒−(𝜆𝑥)
𝑐
]
𝑎 . 

 

The Weibull, exponentiated Weibull (EW) and exponentiated exponential (EE) 

distributions are the most important sub-models of (2.4) for a = b = 1, b = 1, and c 

= b = 1, respectively. For more details about other sub-models of the Kum-W 

distribution see Cordeiro et al. (2010). Also, it can be noted that the Kum-W 

distribution has three shape parameters, a, b and c. These three shape parameters 

allow for a high degree of flexibility of the Kum-W distribution and also, allow 

for all five major hazard shapes: constant, increasing, decreasing, bathtub and 

unimodal failure rates. 

Given a random sample 𝑥1, 𝑥2, … , 𝑥𝑛, the log-likelihood function 𝑙 =
𝑙(𝑎, 𝑏, 𝑐, 𝜆) for the model parameters of the Kum-W distribution can be written 

from (2.4) as 

𝑙 = 𝑛𝑙𝑛(𝑎𝑏𝑐𝜆𝑎) + (𝑐 − 1)∑ ln (𝑥𝑖)
𝑛
𝑖=1 − ∑ (𝜆𝑥𝑖)

𝑐𝑛
𝑖=1 + (𝑎 − 1)∑ ln (𝑤𝑖)]

𝑛
𝑖=1 +

(𝑏 − 1)∑ ln[1 − w𝑖
𝑎]𝑛

𝑖=1 ,         (2.5)                                                                                                                                                                                                                                                          

where 𝑤𝑖 =  [1 − exp (−(𝜆𝑥𝑖)
𝑐]. 

The MLEs  𝜆̂, 𝑐̂, 𝑎̂, 𝑎𝑛𝑑 𝑏̂  are obtained from the nonlinear equations 
𝜕𝑙

𝜕𝑐
=

0,   
𝜕𝑙

𝜕𝜆
= 0,   

𝜕𝑙

𝜕𝑎
= 0  𝑎𝑛𝑑  

𝜕𝑙

𝜕𝑏
= 0 using iterative procedures. 

 

3. Bayesian Analysis for the Kum-W Distribution 
 

Here, approximate Bayes estimates are performed under the assumptions 

of non-informative priors using the Gibbs sampling procedure. This procedure 

allows for generating samples from the posterior distributions. We consider the 

Kum-W model with density function (2.4) and a non-informative joint prior 

distribution for a, b, c and λ given by: 

 

                      𝜋0(𝑎, 𝑏, 𝑐, 𝜆) ∝
1

𝑎𝑏𝑐𝜆
,                                                                     (3.1) 

where 𝑎, 𝑏, 𝑐 𝑎𝑛𝑑 𝜆 > 0. The joint posterior distribution for these parameters can 

be written as 

 

            𝜋( 𝑎, 𝑏, 𝑐, 𝜆 ∣ 𝑥 ) ∝ 𝜋0(𝑎, 𝑏, 𝑐, 𝜆)𝑒𝑥𝑝{𝑙(𝑥; 𝑎, 𝑏, 𝑐, 𝜆)}                             (3.2) 

 

where 𝑙(𝑥; 𝑎, 𝑏, 𝑐, 𝜆) as given by (2.5). 
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Consider the reparametrization 𝜌1 = log (𝑎) and 𝜌2 = log (𝑏), 𝜌3 = log (𝑐) 
and 𝜌4 = log(𝜆).  We obtain from (3.1) a non-informative prior for 𝜌1, 𝜌2, 𝜌3 and 

𝜌4, namely 

 𝜋(𝜌1, 𝜌2, 𝜌3, 𝜌4) = 𝑐𝑜𝑠𝑡𝑎𝑛𝑡,     𝑤ℎ𝑒𝑟𝑒  − ∞ < 𝜌1, 𝜌2, 𝜌3𝑎𝑛𝑑 𝜌4 < ∞.  

The convergence of the Gibbs sampling algorithm depends upon the choice of the 

values of hyper-parameters of the uniform priors.  

Using the above reparamertization, the joint posterior distributions for 𝜌1, 

𝜌2, 𝜌3 and 𝜌4 reduces to 

𝜋(𝜌1, 𝜌2, 𝜌3, 𝜌4 ∣ 𝑥) ∝ 

𝜋(𝜌1, 𝜌2, 𝜌3, 𝜌4) exp {𝑛𝜌3 + 𝑛𝜌1 + 𝑛𝜌2 + 𝑛. 𝑒𝑥𝑝(𝜌3)𝜌4 + (exp(𝜌3) − 1)∑ ln(𝑥𝑖) −
𝑛
𝑖=1

  ∑ (exp(𝜌4) 𝑥𝑖)
exp(𝜌3) + (exp(𝜌1) − 1)∑ ln [1 − 𝑒−(exp(𝜌4)𝑥𝑖)

exp(𝜌3)𝑛
𝑖=1

𝑛
𝑖=1 ] +                (exp(𝜌2) −

1)∑ ln[1 − (1 − 𝑒−(exp(𝜌4)𝑥𝑖)
exp(𝜌3))

exp(𝜌1)

]𝑛
𝑖=1 }    

                                                                                                                            (3.3) 

If we assume the prior 𝜋(𝜌1, 𝜌2, 𝜌3, 𝜌4) = 𝑐𝑜𝑠𝑡𝑎𝑛𝑡, the conditional posterior 

distributions used in the Gibbs sampling algorithm are given by: 

𝜋( 𝜌1 ∣∣ 𝜌2, 𝜌3, 𝜌4, 𝑥 ) ∝ exp {n𝜌1 + (exp(𝜌1) − 1)∑ ln [1 − 𝑒−(exp(𝜌4))
exp(𝜌3)𝑛

𝑖=1 ] +  

                                       (exp(𝜌2) − 1)∑ ln[1 −  (1 − 𝑒−(exp(𝜌4)𝑥𝑖)
exp(𝜌3))

exp(𝜌1)

]𝑛
𝑖=1 },     

𝜋( 𝜌2 ∣∣ 𝜌1, 𝜌3, 𝜌4, 𝑥 ) ∝ exp {𝑛𝜌2 + (exp(𝜌2) − 1)∑ ln[1 − (1 − 𝑒−(exp(𝜌4)𝑥𝑖)
exp(𝜌3))

exp(𝜌1)

]}𝑛
𝑖=1 ,  

𝜋( 𝜌3 ∣∣ 𝜌1, 𝜌2, 𝜌4, 𝑥 ) ∝   exp {𝑛𝜌3 + 𝑛𝑒𝑥𝑝(𝜌3)𝜌4 + (exp(𝜌3) − 1)∑ ln(𝑥𝑖) −
𝑛
𝑖=1

∑ (exp(𝜌4)𝑥𝑖)
exp(𝜌3) + (exp(𝜌1) − 1)∑ ln [1 − 𝑒−(exp(𝜌4)𝑥𝑖)

exp(𝜌3)]𝑛
𝑖=1

𝑛
𝑖=1 + (exp(𝜌2) −

1)∑ ln [1 − (1 − 𝑒−(exp(𝜌4)𝑥𝑖)
exp(𝜌3))

exp(𝜌1)𝑛
𝑖=1 ]},  

and 

𝜋( 𝜌4 ∣∣ 𝜌1, 𝜌2, 𝜌3, 𝑥 )
∝ exp {𝑛. 𝑒𝑥𝑝(𝜌3)𝜌4

−∑(exp(𝜌4) 𝑥𝑖)
exp(𝜌3) + (exp(𝜌1) − 1)∑ln [1 − 𝑒−(exp(𝜌4)𝑥𝑖)

exp(𝜌3)

𝑛

𝑖=1

𝑛

𝑖=1

] + 

                                   (exp(𝜌2) − 1)∑ ln[1 − (1 − 𝑒−(exp(𝜌4)𝑥𝑖)
exp(𝜌3))

exp(𝜌1)

]𝑛
𝑖=1 } . 

 

Posterior summaries of interest can be performed using the WinBUGS 

software which requires only the specification of the joint distribution for the data 

and the prior distributions for the model parameters. 

 

 4. The Bayesian Prediction Model 
 

Now, Predictive density for a single future response, bivariate future 

response and m future responses are derived.  
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4.1 Predictive Density for a Single Future Response 

Let z be a single future response from the model given by (2.4), where z is 

independent of the observed data. Then, the predictive density for a single future 

response (z) given 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) is 

𝑝(𝑧|𝒙) = ∫ ∫ ∫ ∫ 𝑝(𝑧|𝑎, 𝑏, 𝑐, 𝜆) 𝜋( 𝑎, 𝑏, 𝑐, 𝜆 ∣ 𝒙 )
∞

𝑐=0

∞

𝜆=0

𝑑𝑐𝑑𝜆𝑑𝑎𝑑𝑏,
∞

𝑎=0

∞

𝑏=0

 

where 𝑝(𝑧|𝑎, 𝑏, 𝑐, 𝜆) may be defined from model (2.4), see Khan et al. (2013). 

Thus, the predictive density for a single future response is given by 

 

𝑝(𝑧|𝒙) =

{
 
 
 

 
 
 

𝑒−∑ (𝜆𝑥𝑖)
𝑐𝑛

𝑖=1

𝜂1(𝑥)∫ ∫ ∫ ∫ (𝑎𝑏𝑐)𝑛
∞

𝑐=0

∞

𝜆=0

∞

𝑎=0

∞

𝑏=0

𝜆𝑐(𝑛+1)−1𝑧𝑐−1𝑒−(𝜆𝑧)
𝑐
[1 − 𝑒−(𝜆𝑧)

𝑐
]
𝑎−1

[1 − [1 − 𝑒−(𝜆𝑧)
𝑐
]
𝑎
]𝑏−1 ×

∏𝑥𝑖
𝑐−1

𝑛

𝑖=1

 [1 − 𝑒−(𝜆𝑥𝑖)
𝑐
]
𝑎−1

[1 − [1 − 𝑒−(𝜆𝑥𝑖)
𝑐
]
𝑎
]
𝑏−1

 𝑑𝑎𝑑𝑏𝑑𝜆𝑑𝑐, 𝑓𝑜𝑟 𝑧 ≥ 0; 𝑐, 𝜆, 𝑎, 𝑎𝑛𝑑 𝑏 > 0,

 
 

0            𝑒𝑙𝑒𝑠𝑤ℎ𝑒𝑟𝑒,

 

                                                                                                                            (4.1) 

where 𝜂1(𝑥) is a normalizing constant. 

The predictive estimates for a future response will be discussed separately based 

on two real data sets. A numerical integration procedure “NIntegrate” in 

Mathematica software version 8.0, Wolfram Research (2012), is applied to plot 

the predictive density graph. Also the Mathematica Package is utilized to carry 

out all related calculations such as the predictive means, standard deviation, 

predictive intervals, and the measures of skewness and kurtosis. 

 

4.2 Predictive Density for a Bivariate Future Response 

Let 𝑧1 and 𝑧2 be two independent future responses from model (2.4). To 

derive the joint predictive density of  𝑧1 and 𝑧2, we utilize the posterior density 

𝜋( 𝑎, 𝑏, 𝑐, 𝜆 ∣ 𝑥 ) specified by (3.2). Thus, the predictive density for a bivariate 

future response is given by 

𝑝(𝑧1, 𝑧2|𝒙) =

{
 
 

 
 𝜂2(𝑥) ∫ ∫ ∫ ∫ (𝑎𝑏𝑐)𝑛+1

∞

𝑐=0

∞

𝜆=0

∞

𝑎=0

∞

𝑏=0
𝜆𝑐(𝑛+2)−1𝑒−∑ (𝜆𝑧𝑖)

𝑐2
𝑖=1 ∏ 𝑧𝑖

𝑐−1[1 − 𝑒−(𝜆𝑧𝑖)
𝑐
]
𝑎−12

𝑖=1 [1 − [1 − 𝑒−(𝜆𝑧𝑖)
𝑐
]
𝑎
] × 

𝑒−∑ (𝜆𝑥𝑖)
𝑐𝑛

𝑖=1  ∏ 𝑥𝑖
𝑐−1[1 − 𝑒−(𝜆𝑥𝑖)

𝑐
]
𝑎−1𝑛

𝑖=1 [1 − [1 − 𝑒−(𝜆𝑥𝑖)
𝑐
]
𝑎
]
𝑏−1

 𝑑𝑎𝑑𝑏𝑑𝜆𝑑𝑐, 𝑓𝑜𝑟 𝑧𝑖 ≥ 0; 𝑐, 𝜆, 𝑎, 𝑎𝑛𝑑 𝑏 > 0,
 
 

0            𝑒𝑙𝑒𝑠𝑤ℎ𝑒𝑟𝑒,

  

                                                                                                                                                     (4.2) 

where 𝜂2(𝑥) is a normalizing constant. 

 

4.3 Predictive Density for m Future Responses 

 

Let 𝑧1, 𝑧2, … , 𝑧𝑚 be the m future responses from model (2.4). Thus, 
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𝑝(𝑧1, 𝑧2, … , 𝑧𝑚|𝒙) =

{
 
 

 
 𝜂𝑚(𝑥) ∫ ∫ ∫ ∫ (𝑎𝑏𝑐)𝑛+𝑚−1

∞

𝑐=0

∞

𝜆=0

∞

𝑎=0

∞

𝑏=0
𝜆𝑐(𝑛+𝑚)−1𝑒−∑ (𝜆𝑧𝑖)

𝑐𝑚
𝑖=1 ∏ 𝑧𝑖

𝑐−1[1 − 𝑒−(𝜆𝑧𝑖)
𝑐
]
𝑎−1

[1 − [1 − 𝑒−(𝜆𝑧𝑖)
𝑐
]
𝑎
]𝑚

𝑖=1  

𝑒−∑ (𝜆𝑥𝑖)
𝑐𝑛

𝑖=1  ∏ 𝑥𝑖
𝑐−1[1 − 𝑒−(𝜆𝑥𝑖)

𝑐
]
𝑎−1

[1 − [1 − 𝑒−(𝜆𝑥𝑖)
𝑐
]
𝑎
]
𝑏−1

𝑛
𝑖=1  𝑑𝑎𝑑𝑏𝑑𝜆𝑑𝑐, 𝑓𝑜𝑟 𝑧𝑖 ≥ 0; 𝑐, 𝜆, 𝑎, 𝑎𝑛𝑑 𝑏 > 0,

 
 

0            𝑒𝑙𝑒𝑠𝑤ℎ𝑒𝑟𝑒,

  

                                                                                                                                                     (4.3) 

where 𝜂𝑚(𝑥) is a normalizing constant. For m = 1, equation (4.3) reduces to the 

predictive density for a single future response obtained in (4.1); when m = 2, 

equation (4.3) reduces to the predictive density for a bivariate future response 

obtained in (4.2); and so on. 

 

5. Applications to Real Data 
 

Here, two real data sets were considered. Through likelihood ratio test and 

Kolmogorov-Smirnov test, Cordeiro et al. (2010) mentioned that the data sets 

studied by Meeker and Escobar (1998, p. 383) and by Murthy et al. (2004, p. 154) 

were fitted to the Kum-W distribution. 

Data Set 1 (voltage data): This data gives the times of failure and running times 

for a sample of devices from a field-tracking study of a larger system. At a certain 

point in time, 30 units were installed in normal service conditions. The times 

(Thousands of cycles) are: 275, 13, 147, 23, 181, 30, 65, 10, 300, 173, 106, 300, 

300, 212, 300, 300, 300, 2, 261, 293, 88, 147, 28, 143, 300, 23, 300, 80, 245, 266. 

Note that: data were censored at 300. 

They considered this data as complete data and obtained the maximum 

likelihood estimates for the Kum-W distribution as follow: 

  𝑐̂ = 7.7026,   𝜆̂ = 0.0043, 𝑎̂ = 0.0516, 𝑎𝑛𝑑       𝑏̂ = 0.2288. 

Data Set 2 (test stopped data): This data represents failure times and are taken 

from Murthy et al (2004, p. 154). The data set is: 0.0014, 0.0623, 1.3826, 2.0130, 

2.5274, 2.8221, 3.1544, 4.9835, 5.5462, 5.8196, 5.8714, 7.4710, 7.5080, 7.6667, 

8.6122, 9.0442, 9.1153, 9.6477, 10.1547and 10.7582.   

They considered this data as complete data and obtained the maximum 

likelihood estimates for the Kum-W distribution as follow: 

  𝑐̂ = 4.4200,   𝜆̂ = 0.1744, 𝑎̂ = 0.0663, 𝑎𝑛𝑑       𝑏̂ = 0.1725. 

Now, We consider the Kum-W distribution with density (3.2) under the 

reparametrization 𝜌1 = log (𝑎),𝜌2 = log (𝑏), 𝜌3 = log (𝑐) and 𝜌4 = log(𝜆). We 

assume approximate non-informative prior uniform U(0,2), U(0,0.01), U(0,0.01)  
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and U(-4,-3) distributions for 𝜌1, 𝜌2, 𝜌3 and 𝜌4 respectively. A set of 9000 Gibbs 

samples was generated after a “burn-in-sample” of size 1000 to eliminate the 

initial values considered for the Gibbs sampling algorithm. All the calculations are 

performed using the WinBUGS software. The following tables list the posterior 

descriptive summaries of interest for the Kum-W model. The posterior kernel 

densities for the parameters are given in figures 1-2.   

Table1: Summary results for the posterior parameters in the case of Kum-W model based on 

30 data points (voltage data) 

 

Parameter Estimate Standard Deviation MC error 95% Credible Interval 

a 2.524 0.464200 0.004882 (1.705, 3.506) 

b 1.004 0.002864 3.324E-5 (1.000, 1.010) 

c 1.004 0.002781 4.245E-5 (1.000, 1.010) 

λ 0.01889 5.547E-4 9.655E-6 (0.01833, 0.0204 ) 

 

Table2: Summary results for the posterior parameters in the case of Kum-W model based on 

20 data points (test stopped data) 

 

Parameter Estimate Standard Deviation MC error 95% Credible Interval 

a 1.042 0.0402 6.627E-4 (1.001, 1.149) 

b 1.005 0.002914 3.457E-5 (1.000, 1.010) 

c 1.005 0.002907 3.222E-5 (1.000, 1.010) 

λ 0.04845 0.001291 2.193E-5 (0.04499, 0.04975) 

 

An HPD interval is the interval which includes the most probable values of a 

given density at a given significance level, subject to the condition that the density 

function has the same value at both end points. The HPD interval [𝑔1, 𝑔2] for a 

single future response, z, must simultaneously satisfy the following two 

conditions: 

𝑃𝑟(𝑔1 ≤ 𝑧 ≤ 𝑔2) = 1 − 𝛼  

and 

𝑝(𝑔1|𝒙) = 𝑝(𝑔2|𝒙), 

where 𝑔1 and 𝑔2 are to be arbitrary chosen so that 𝑝(𝑔1|𝒙) = 𝑝(𝑔2|𝒙). For more 

details about HPD intervals, see Box and Tiao (1973).  

 

We estimated the predictive inference for a future response and their 

results are given in table (3). We determined certain levels of HPD interval for a 

single future response given a complete sample which are specified by 𝑔1 and 𝑔2, 

and  their results are reported in table (4). The predictive densities for the future 

response are given in figures 3-4. 
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Table (3): Summary Results of the Predictive Inference for a Single Future Response  

 

 

Data set 1 (n=20) Data set 2 (n=30) 

Raw Moments Central Moments Raw Moments Central Moments 

𝜇́1 = 20.6137 𝜇2 = 64.5201 𝜇́1 = 110.75100 𝜇2 = 1773.770 

𝜇́2 = 489.446 𝜇3 = 71.8853 𝜇́2 = 14039.5000 𝜇3 = 8330.690 

𝜇́3 = 12821.2 𝜇4 = 11014.2 𝜇́3 = 1.956 × 10
6 𝜇4 = 8.2997 × 10

6 

𝜇́4 = 362000 𝜇́4 = 2.9298 × 10
8 

Skewness & Kurtosis 

𝛽1 = 0.0192396 

𝛽2 = 2.645840 

𝛾1 = √𝛽1 = 0.13871 

𝛾2 = |𝛽2 − 3| = 0.354162 

Skewness & Kurtosis 

𝛽1 = 0.0124358 

𝛽2 = 2.63797 

𝛾1 = √𝛽1 = 0.11152 

𝛾2 = |𝛽2 − 3| = 0.36203 

                            Mean     =  20.6137 

      Standard deviation    =  8.03244 

 Coefficient of Skewness  =  0.13871 

 Coefficient of Kurtosis    =  0.35416 

 

Mean       = 110.7510 

Standard deviation        = 42.1161     

Coefficient of Skewness = 0.11152 

Coefficient of Kurtosis   = 0.36203 

 

 

 

Table (4): Summary Results of the Highest Predictive Density (HPD) Intervals  

with different levels for a Single Future Response 

 

 

Data Set 1: HPD Intervals Data Set 2: HPD Intervals 

90% (7.07854, 33.5074) 90% (39.8427, 178.579) 

95% (5.10813, 35.7896) 95% (29.1782, 190.343) 

98% (3.25.778, 38.3968) 98% (19.0238, 203.724) 

99% (2.28423, 40.1602) 99% (13.5896, 212.737) 
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Posterior Densities:  

a sample: 9000
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Figure1: Posterior kernel density for the parameters in the case of Kum-W model 

 based on 30 voltage data 

 

a sample: 9000

    0.8     1.0     1.2     1.4

    0.0

   10.0

   20.0

   30.0

 

b sample: 9000

  0.995     1.0   1.005    1.01

    0.0

   50.0

  100.0

  150.0

 

c sample: 9000

  0.995     1.0   1.005    1.01

    0.0

   50.0

  100.0

  150.0

 

lambda sample: 9000

  0.035    0.04   0.045

    0.0

  200.0

  400.0

  600.0

  800.0

 

 

Figure2: Posterior kernel density for the parameters in the case of Kum-W model 

 based on 20 test stopped data 
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6. Conclusion 
 

Approximate Bayes estimates are obtained using the Gibbs sampling 

procedure. The posterior kernel densities are plotted for each parameter and the 

summary results are given. Using the Bayesian approach predictive densities for a 

single future response, a bivariate future response, and several future responses 

from the Kum-W model are discussed. Two real data sets are used to illustrate the 

predictive results in the case of a single future response. The normalizing constant 

for each of the predictive density is estimated to plot the predictive density. The 

first four raw moments and the central moments are computed for each of the 

predictive density. Estimated values of the measures of skewness and kurtosis of 

the predictive are reported. Based on these measures one can be noted that the 

predictive density has minor positive skewness. Finally, the highest predictive 

density intervals (90%, 95%, 98%, and 99%) are also computed. 
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