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In this article, the generalized unified method (GUM) is used for finding mul-

tiwave solutions of the coupled Whitham-Broer-Kaup (WBK) equation with

variable coefficients.Which describes the propagation of of shallowwaterwaves.

Here, we study the effects of the indirect nonlinear interaction of one-, two-

and three-solitonic similaritons on the behavior of propagation of waves, in

quasi-periodic distributed system. This study can unable us to control the

dynamics of type soliton (soliton, anti-soliton) similaritons waves in dispersive

waveguides. To give more physical insight to the obtained solutions, they are

shown graphically. Their different structures are depicted by taking appropriate

arbitrary functions. Further, with the suitable parameters, the indirect nonlinear

interaction between two and three-soliton waves are shown weal, in the sense

that their amplitude does not blow up. Moreover, because of the importance of

conservation laws Cls and stability analysis SA in the investigation of integrabil-

ity, internal properties, existence, and uniqueness of a differential equation, we

compute the Cls via multiplier technique and stability analysis via the concept

of linear stability analysis for theWBK equations using the constant coefficients.
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1 INTRODUCTION

In recent years, studies on nonlinear evolution equations (NLEE) are devoted to investigate various phenomena in non-

linear science. Focusing attention on different branches, such as fluid mechanics, plasma physics, chemistry, biology,

solid-state materials, etc.1-5 To this issue , various methods were suggested in the literature in the last few decades. With

relevance to multiwave solutions.6-13

On the other hand, when the inhomogeneities of media are taken into account, that is the NLEE are considered with

space variable coefficients. This case represents more realistic models than those which are considered with constant

coefficients.14-17 The soliton wave propagation in the above-mode has been called “non-autonomous soliton.” Hence,

N-soliton nonautonomous soliton interactions in various play a definitive role in the formation of the structure of wave

and also the propagation direction with a phase shift in dispersive media.18-24
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The dispersive long (surface) water waves with time-dependent coefficient are given by the equations

ut + uux + vx − 𝛽(t)uxx = 0 ,

vt + (uv)x + 𝛼(t)uxxx − 𝛽(t)vxx = 0 ,
(1)

whereu(x, t) is the field of horizontal velocity, v(x, t) is the heightwaves, 𝛼(t) and 𝛽(t) are the dispersion coefficients varying.

If 𝛼(t) and 𝛽(t) are real constant, then the Equation 1 represents the WBK equation with constant coefficients, which had

been suggested by Whitham,25 Broer,26 and Kaup.27 The cases of Equation 1 are classified as follows: when 𝛼(t)= 1 and

𝛽(t) = 0, the Equation 1 is reduced to the propagation of long waves in the shallow water.28,29

Motivated by the above mentioned works, in this paper, the solutions of Equation 1 are constructed from which the

integrability of Equation 1 can be verified, see also Abdel-Gawad and Abdel-Gawad and Tantawy30-34 of Equation 1.

Explicit multi(two and three) soliton solutions of the Equation 1 are obtained. In the study of stability of homogeneous

solutions, influence of the group-velocity dispersion equation is shown. The effects of 𝛽(t) on the propagation and inter-

action of the nonautonomous waves. Geometric structures are discussed via graphical presentation in the case of weakly

dispersive medium, where the wave-amplitude does not grow with time.

Furthermore, because of the importance of Cls and SA in the investigation of integrability, internal properties, existence,

and uniqueness of a differential equation, several authors have studied the Cls and SA for various nonlinear differential

equations.35-40 Thus, we compute the Cls via multiplier technique and SA via the concept of linear stability analysis for

the governing equation.

This paper is organized as follows. In Section 2, the generalized unified method (GUM) are classified. Section 3, is

devoted to considered multisoliton solutions over using the numerical results to illustrate the dynamical of waves. In

Section 4, we present the Cls via multiplier and SA via the concept of linear stability analysis. The conclusion is addressed

in Section 5.

2 THE GUM METHOD

We will briefly present the main steps of the GUM method that will be applied to the nonlinear Equation 1, as in the

following steps:

Step 1. Let us have the general evolution equation

Fk(x, t, ui1 ,ui2 , … ui1t,ui2t …) = 0, k, i𝑗 ,= 1, 2… s , (2)

where F is polynomial in their argument and x and t are missing Equation 3 that has traveling wave solutions

(TWS) ( or here is called semiself similar ). In this case, Equation 2 reduces to

and take the wave transformation

ui(x, t) = Ui(𝜉), 𝜉 = 𝜅 x + ∫
t

0

𝜔(𝜏)d𝜏, (3)

Gk

(

Ui1 ,Ui2 , …U ′
i1
,U ′

i2
, …U ′′

i1
,U ′′

i2
…

)

= 0, U′ =
dUi

d𝜉
, i𝑗 = 1, 2, … s. (4)

Step 2. We suppose that Equation 4 has forms of a polynomial or a rational solution with ordinary differential equation,

which can be take as

(i) Polynomial function solutions with ordinary equation is

u(𝜉) =

n
∑

i=0

ai𝜑
i(𝜉), (𝜑′(𝜉))p =

k
∑

i=0

c𝑗𝜑
i(𝜉), p = 1, 2, (5)

where n is found by using the balance condition from highest order derivative term and the highest order non-

linear term of Equation 1, while k is determined from the consistency condition. Because the solitary wave is

an exact balance between nonlinearity and dispersion, it was long assumed that rather special initial conditions

were necessary to make one.
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(ii) Rational function solutions.

The rational function solution can be written as follows:

u(𝜉) =

∑n
i=0 ai𝜑

i(𝜉)
∑r

i=0 qi𝜑
i(𝜉)

, (𝜑′(𝜉))p =

k
∑

i=0

c𝑗𝜑
i(𝜉), p = 1, 2, (6)

where ai, qi, and cj are unknown parameters.

Step 3. Two and three wave solutions are can be obtained by accounting for two and three ordinary differential

equations.

The rational function solutions ( two-, three-nonautonomous, or similariton-pair solitons ) take the following

expression:

u(𝜑1, 𝜑2) =
a0 +

∑2
i=1 ai𝜑i + a3𝜑1𝜑2

q0 +
∑2

i=1 qi𝜑i + q3𝜑1𝜑2

, (7)

u(𝜑1, 𝜑2, 𝜑3) =
a0 +

∑3
i=1 ai𝜑i + a4𝜑1𝜑2 + a5𝜑2𝜑3 + a6𝜑2𝜑3 + a7𝜑1𝜑2𝜑3

q0 +
∑3

i=1 aq𝜑i + q4𝜑1𝜑2 + q5𝜑2𝜑3 + q6𝜑2𝜑3 + q7𝜑1𝜑2𝜑3

.

𝜑′
i(𝜉𝑗) = ci𝜑𝑗(𝜉𝑗) + c𝑗0 , i = 𝑗 = 1, 2, 3.

Step 4. We substitute Equations 5 to 7 into (4) and solving the ordinary equations. As a result of this substitution with

(Mathematica, Matlab, or other programming), we get a polynomial of 𝜑i.

We calculate all the coefficients of same power of 𝜑i to 0. The conditions of variable coefficients and the explicit

solutions of Equation 4 solution are determination.

If possible, we may conclude with the uniform formula of N-nonautonomous solutions for anyN ≥ 1. Here, we

mention that 𝜉j and t are independent variables.

Step 5. Ensure that the solutions are satisfies the Equation 4.

It is worth notching that there 𝜑i, i = 1, 2, 3 are exponential function method (when k = p = 1).10 This

the present method is the same as the Exp-function expansion method. Otherwise includes, it is generalized

mentioned method when k > 1, orp > 1.

3 MULTIPLE SOLITON SIMILARITON-PAIRS

In this section, we give the detailed description of the semiself-similar solutions of Equation 1 including one, two-, and

three-soliton similariton pairs.

Here, we use the transformation v(x, t) = ux(x, t) and substituting by this condition into Equation 1, we find that, the

first of Equation 1 (or in the second in [1] and integration with neglecting the constant of integration with taken 𝛼 = 1),

is equivalent to the variant Burger equation

ut + uux + 𝛾(t)uxx = 0 . (8)

By bearing in mind that 𝛾(t) = 1 − 𝛽(t).

3.1 One-soliton

By considering the wave transformations u(x, t) = u(𝜉1, t), and 𝜉1 = 𝜅1x + ∫ t

0 𝜔1(𝜏)d𝜏 , we change the Equation 8 to the

following equation:

𝜔(t)u𝜉1 + 𝜅1uu𝜉1 + 𝜅21𝛾(t)u𝜉1𝜉1 = 0 , (9)

when p = 1. By taking n = r (when k = 1) and by using Equation 6, the solution of Equation 9 has the form

u(𝜉1, t) =
a1𝜑(𝜉1) + a0
q1𝜑(𝜉1) + q0

,

𝜑𝜉1
= c0 − c1𝜑(𝜉1) ,

(10)
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by substituting from Equation 10 into 9, we find that the solutions are

u(x, t) =
1

q0

[

a0 +
2k1q1𝛾(t)𝜎1

(

c1e𝜉1c1 − c10
)

c1
(

q1e𝜉1c1 + q0
)

− c10q1

]

v(x, t) = ux(x, t) ,

a1 =
q1 (a0 + 2k1𝛾(t) (𝜎1))

q0
, 𝜔1(t)=k1

(

k1c1𝛾(t) −
a1
q1

)

𝜎1 = c1q0 − c10q1 ,

(11)

where qi and cj, i, j = 0, 1 are arbitrary parameters.

3.2 Two-soliton

In this case, the obtained analytical solutions for two-soliton solutions, we write transformation u(x, t) = u(𝜉1, 𝜉2), 𝜉𝑗 =

𝜅𝑗x + ∫ t

0
𝜔𝑗(𝜏)d𝜏, and j = 1, 2. Substituting Equation 71 into Equation 8 and using Mathematica, then equating to 0,

each coefficient of the same order power of the ordinary functions 𝜑i yields a set of equations. Suppose that Equation 71
admits a solution of the form

u(𝜉1, 𝜉2) = P2(𝜑1,2)∕Q2(𝜑1,2) , (12)

P2(𝜑1,2) = e𝜉2c2c2 (−2k1k2c1𝛾(t)𝜎12

+
(

c1
(

q3(t)e
𝜉1c1 + q2

)

− c10q3
)

k22c2𝛾(t) − 𝜔2(t)
)

− c1𝜎21e
𝜉1c1

(

k22c2𝛾(t) + 𝜔2

)

Q2(𝜑1,2) = k2
(

c2e
𝜉2c2

(

c1
(

q3(t)e
𝜉1c1 + q2

)

− c10q3
)

c1𝜎21 + e𝜉1c1
)

,

where

𝜔1(t)=k1

(

k1c1𝛾(t) − k2c2𝛾(t) +
𝜔2(t)

k2

)

,

𝜎12=c1q2 − c10q3, 𝜎21=c2q1 − c20q3 ,

(13)

and qi, cj, and c0j, i, = 0, 1, 2, j = 1, 2. are arbitrary parameters.

3.3 Three-soliton

By the substitution of Equation 72 into Equation 8, three-soliton solutions can be obtained with the iterative algorithm of

the GUM.

According to the solution of Equation 8 with auxiliary equations is

u(x, t) = P3(𝜑1,2,3)∕Q3(𝜑1,2,3) , v = ux

P3(𝜑1,2,3) = c1c2 (c3q4 − c30q7)
(

−e𝜉1c1+𝜉2c2
)

𝜅23c3𝛾(t) + 𝜔3(t) − e𝜉3c3c3
(

c2e
𝜉2c2

(c1q5 − c10q7) (𝜅3𝛾 (2𝜅1c1 − 𝜅3c3) + 𝜔3(t))

+ e𝜉1c1c1
(

c2q7
(

−e𝜉2c2
) (

𝜅23c3𝛾(t) − 𝜔3(t)
)

+ (c2q6 − c20q7) (𝜅3𝛾(t) (2𝜅2c2 − 𝜅3c3) + 𝜔3(t))))

Q3(𝜑1,2,3) = 𝜅3
(

c1c2 (c3q4(t) − c30q7) e
𝜉1c1+𝜉2c2

+ e𝜉3c3c3
(

c2 (c1q5 − c10q7) e
𝜉2c2

c1 + e𝜉1c1
(

c2
(

q7(t)e
𝜉2c2 + q6

)

− c20q7
)))

,

(14)

where

𝜔1(t)=k1

(

k1c1𝛾(t) − k2c2𝛾(t) +
𝜔2(t)

k2

)

, 𝜔2(t)=k
2
2c2𝛾(t), (15)

and we take qi = 1, i = 4, 6, 7, but a7 and 𝜅 i, i = 1, 2, 3 are arbitrary parameters.
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We have stated the observable variable-coefficient effect 𝛾(t) effect on multisoliton waves controlling and collsion. In

Figure 1A describes the similariton pairs of to kind waves via two and three-soliton and two, three-antisoliton. Here,

weak collision is shown, and soliton amplitude is proportional to the diffusion coefficient 𝛾(t). Moreover, Figure 1A shows

tunneling in the periodic two-solitonwaves.We remark that amplitude does not growwith time. This agree with theweak

dispersive. Figure 1B shows periodic lattice wave with tunnelling.

Although solitons in Figure 1A,B hold larger wave amplitude than those of Figure 1C,D. They both can propagate for

long distances under 𝛾(t) is periodic and pulses waves.

Also the dynamical characteristics of two kinds of soliton including the amplitude, width, and phase have the same

values for along-distance distribution.

The Figures 2A and 2B showmultigraded index and periodic zigzag propagation for the three- soliton collisions at v(x, t).

The Figures 3A, 3B, and 3C, the propagations of two-soliton incoming in upper layer and two-antisoliton outgoing in

FIGURE 1 A, b, c, and d, show 3D and control plot for the solutions of Equations 12 and 15 are depicted against x and t. Parameters are

chosen as A, B, c1(t) = 2, c2(t) = 4, c10(t) = 0.2, c20(t) = −0.1, 𝜅1 = 0.9, 𝜅2 = −0.4, 𝛾(t) = cos(t) + sech(t), and C, D,

c1(t)=10, c2(t)=5, c3(t)=4, c10(t)=0.2, c20(t)=0.4, c30(t)=0.3, 𝜅1=0.3, 𝜅2=0.3, 𝜅3= − 0.4 and 𝛾(t)= cos(t) + sech(t). In this figures,

qi(t) = 1, i = 4, 5, 6, 7 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 A, and B, are the solutions of Equations 12 and 15 are depicted against x and t, where the free parameters are the same values

of Figure 1 except𝛾(t) = sn(t, 0.5) + tanh(t) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Frequency of the perturbation against the wave number with different parameter values [Colour figure can be viewed at

wileyonlinelibrary.com]

the lower layer. Here, no periodic waves are propagating along the t − axis.

Moreover, Figure 2A shows the effects of indirect interaction propagation of three on the periodic soliton waves, while

Figure 2B shows multiperiodic lattice with tunneling. We have stated the observable variable-coefficient effect( 𝛾(t)) on

multisoliton waves controlling and collusion. In Figures 1 and 2 describe the similariton pairs of to kind waves via two

and three-soliton and two, three-antisoliton. Here, weak collision is shown, and soliton amplitude is proportional to the

diffusion coefficient 𝛾(t)

4 CONSERVATION LAWS FOR EQUATION (1) BY MULTIPLIER

Consider N independent variable such as X = (X1,X2, … ,XN) and U = (U1,U2, … ,UM), be M dependent variables.

Take into consideration, also a system of R PDEs with Kth−order as35

Q𝛾 [U] = Q𝛾 (X ,U,U(1),U(2), … ,U(K)), 𝛾 = 1, 2, … ,R, (16)

with U(1) = {U𝛾

(i)
},U(2) = {U𝛾

(i𝑗)
}, {U𝛾

(i)
} =

𝜕U𝛾

i

𝜕Xi
, {U𝛾

(i𝑗)
} =

𝜕2U𝛾

𝜕Xi𝜕X𝑗

, … , assume that u = (u2,u2, … ,un) represents an

arbitrary functions of the independent variablesX anddepicts partial derivatives 𝜕

𝜕xi
by subscripts i. ie,u𝜎

i
=

𝜕u𝜎

𝜕Xi
,u𝜎

i𝑗
=

𝜕2u𝜎

𝜕XiX𝑗

,

etc.

1.

Di =
𝜕

𝜕Xi
+ U𝛾

i

𝜕

𝜕U𝛾

i

+ U𝛾

i𝑗

𝜕

𝜕U𝛾

i

+ U𝛾

i𝑗k

𝜕

𝜕U𝛾

𝑗k

+ ..., (17)

where i, j,K, ... = 1, 2, … ,M.

2. The multipliers of Equation 16 are a function {Ξ𝛾 [u]} such that

Ξ𝛾 [u]Q𝛾 [u] = DiT
i[u], (18)

for some functions Ti[u]. If u𝜎 = u𝜎(X) is a solution for Equation 16, then Equation 18 gives the Cls36

DiT
i[u] = 0, (19)

for Equation 16 and for every i, Ti[u] is a flux.

3. Thewell-knownEuler generators possessing the differential function uj and the derivatives ui
𝑗
, u𝑗

i1i2
… are generators

stated by

4.

E𝑗
u =

𝜕

𝜕u𝑗
− Di

𝜕

𝜕u𝑗
i

+ ... + (−1)sDi1 ...Dis

𝜕

𝜕u𝑗
i1...is

, (20)
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for every j = 1, 2, … ,M{Ξ𝛾 [u]} generates a set of multipliers for a Cls of Equation 16 provided that each Euler

generator Equation 20 eradicates the left side of Equation 18

E𝑗
u(Ξ

𝛾 [u]Q𝛾 [u]) ≡ 0, 𝑗 = 1, … ,N, (21)

for arbitrary u,ui,uij...etc.

Suppose that 𝛼 and 𝛽 are an arbitrary constant in Equation 1, from determining Equation 21 for multipliers, we attain

the first-order multipliers Ξ1(x, t,u, v,ux, vx,ut, vt), Ξ2(x, t,u, v,ux, vx,ut, vt) for the governing equation presented by

Ξ1 = 0,

Ξ2 = c1𝛼uxx − c1𝛽vx + c1uv + c2𝛽ux +
1

2
c2u

2 + c2v,
(22)

where c1 is an arbitrary constant. Therefore, the multipliers for the nontrivial local Cls involving the cases isolated by free

constants can be obtained as

Ξ1 = 0,

Ξ2 = 1.
(23)

Subsequently, we obtain the following fluxes:

Tt = 0,

Tx = 𝛼uxx − 𝛽vx + uv.
(24)

When

Ξ1 = 1,

Ξ2 = 0,
(25)

we obtain the following fluxes

Tt = 0,

Tx = 𝛽ux +
1

2
u2v.

(26)

The presented conservation laws could be constructed frompairs of symmetries and adjourn symmetries using the general

theory presented in Ma.37,38 This result will be investigated in the future studies.

4.1 Stability analysis to Equation 1

In this subsection, the concept of linear stability analysis39-44 will be applied to investigate the stability analysis for the

governing equation. Suppose that 𝛼 and 𝛽 are an arbitrary constant in Equation 1, then by considering the perturbed

solution of the form

u(x, t) = P1 + 𝜖w(x, t)

v(x, t) = P2 + 𝜏r(x, t),
(27)

it is easy to see that any constantsP1 andP2 are a steady state solution of Equation 1. Inserting Equation 27 into Equation 1,

one gets

𝜖wt + 𝜏rx + 𝜖P1wx + 𝜖2wwx + 𝜖𝛽wxx = 0,

𝜏rt + 𝜏P1rx + 𝜖𝜏wrx + 𝜖𝜏rwx + 𝜖P2wx − 𝛽𝜏rxx + 𝛼𝜖wxxx = 0,
(28)

linearizing (28) in 𝜖 and 𝜏 give

𝜖wt + 𝜏rx + 𝜖P1wx + 𝜖𝛽wxx = 0,

𝜏rt + 𝜏P1rx + 𝜖P2wx − 𝛽𝜏rxx + 𝛼𝜖wxxx = 0.
(29)

Suppose that Equation 29 has a solution of the form

w(x, t) = 𝛼1e
(ikx+i𝜎t)

r(x, t) = 𝛼2e
(ikx+i𝜎t),

(30)
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where k is the normalized wave number, substituting Equation 30 into Equation 29 yields

ik2𝜖𝛽𝛼1 + 𝜖𝜎𝛼1 + k𝜖P1𝛼1 + k𝜏𝛼2 = 0,

−ik3𝛼𝜖𝛼1 + ik𝜖P2𝛼1 + k2𝛽𝜏𝛼2 + i𝜏𝜎𝛼2 + ik𝜏P1𝛼2 = 0.
(31)

Collecting terms with 𝛼1, 𝛼2 gives
(

𝜖(ik2𝛽 + 𝜎 + kP1) k𝜏
−ik𝜖(k2𝛼 − P2) 𝜏(k2𝛽 + i𝜎 + ikP1)

)(

𝛼1
𝛼2

)

=

(

0
0

)

, (32)

and taking the determinant of the above yields

ik4𝛼𝜖𝜏 + ik4𝜖𝛽2𝜏 + i𝜖𝜏𝜎2 + 2ik𝜖𝜏𝜎P1 + ik2𝜖𝜏P21 − ik2𝜖𝜏P2 = 0. (33)

Solving for 𝜎 yields

𝜎(k) = −kP1±i
√

k4𝛼 + k4𝛽2 + k2P2. (34)

The relations for the dispersion in Equation 34 will be investigated. The sign of the real part (Re) of 𝜎 suggests either the

solution will become bigger or vanish in a given period of time. When the sign of Re for 𝜎(k) is negative for all k values,

then any superposition of solutions of the form e(i𝜎t+ ikx) will come to vanished. In other words, if the Re is positive for

some values of k, thenwith time some components of a superpositionwill become bigger rapidly. The former case is called

stable, whereas the latter is unstable. If the maximum of the Re is exactly 0, the situation is called marginally stable. It is

more difficult to assess the long-term behavior in this case. Thus, from Equation 34, one can observe that the Re is always

negative for k > 0, which implies that the dispersion relation is stable. If k < 0, the Re will be positive, hence in the

case the dispersion is unstable. When k = 0, the Re will be 0, which suggests that the dispersion is marginally stable in

this case.

5 CONCLUSIONS

With the help of the GUM and symbolic computation, we have investigated the possibility of supporting multisolitons

in a variable-coefficient for Equation 1 and given the graphical analysis. Figures have been plotted for us to analyze the

propagation and collusion of several kinds of rational soliton solutions for long distance distrbution through the choice

of free parameters.

Further, some main features of solutions have been shown. These obtained solutions can be used to describe the pos-

sible construct technicality for fluid, oceanic, and long wave phenomenon in shallow water. Moreover, because of the

importance of Cls and SA in the investigation of integrability, internal properties, existence, and uniqueness of a differ-

ential equation, we computed the Cls via multiplier technique and stability analysis via the concept of linear stability

analysis for the Equation 1 when 𝛼 and 𝛽 are constants.
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