Amir Atiya
Professor of Computer Engineering
(email)
Publications
Export 134 results:
RTF
Tagged
XML
BibTex
Sort by:
Author
Title
Type
[
Year
]
1992
Parthasarathy, S., A. G. Parlos, and A. F. Atiya,
"
Direct Adaptive Control of Process Systems Using Recurrent Neural Networks
",
Colloids and Surfaces A-physicochemical and Engineering Aspects
, 1992.
Abstract
n/a
Parlos, A. G., M. Jayakumar, and A. Atiya,
Early detection of incipient faults in power plants using accelerated neural network learning
,
, 1992.
Abstract
n/a
Parlos, A. G., A. F. Atiya, K. T. Chong, and W. K. Tsai,
"
Nonlinear identification of process dynamics using neural networks
",
Nuclear Technology
, vol. 97, pp. 79–96, 1992.
Abstract
n/a
Atiya, A., and A. Parlos,
"
Nonlinear system identification using spatiotemporal neural networks
",
International Symposium on Neural Networks
, 1992.
Abstract
n/a
Atiya, A. F.,
"
Recognition of multiunit neural signals
",
IEEE Transactions on Biomedical Engineering
, vol. 39, pp. 723–729, 1992.
Abstract
n/a
Parlos, A. G., K. T. Chong, and A. Atiya,
U-tube steam generator empirical model development and validation using neural networks
,
, 1992.
Abstract
n/a
1991
Parlos, A. G., A. Atiya, and K. T. Chong,
Dynamic gradient descent learning algorithms for enhanced empirical modeling of power plants
,
, 1991.
Abstract
n/a
Parlos, A. G., A. Atiya, and K. T. Chong,
Empirical modeling of nuclear power plants using neural networks
,
, 1991.
Abstract
n/a
Parlos, A., A. Atiya, K. Chong, W. Tsai, and B. Fernandez,
"
Recurrent multilayer perceptron for nonlinear system identification
",
International Symposium on Neural Networks
, 1991.
Abstract
n/a
« first
‹ previous
1
2
3
4
5
6
Bio
CV
Publications
Classes
Recent Publications
Symbolic function network
An Analytic Approximation for the Likelihood Function for the Volatility Estimation Problem for the Heston Model
A new algorithm for learning in piecewise-linear neural networks
EVOLVING NEURAL NETWORKS ENSEMBLES NNEs
Contributed article Multi-step-ahead prediction using dynamic recurrent neural networks
more
Tourism