Feature Selection using Dynamic Binary Particle Swarm Optimization for Arabian Horse Identification System

Presented by: Samar Ibrahem Youssef

MSc Student, Information Technology Department, Faculty of Computers and Information, Cairo University

Scientific Research Group in Egypt

Annual Conference of the Institute of Studies and Statistical Research 2017 Workshop in Intelligent Systems and Applications
Outline

- Introduction.
- Problem Statement.
- Proposed Methodology:
 - Phase I: Pre-processing.
 - Phase II: Segmentation.
 - Phase III: Feature Extraction.
 - Phase IV: Feature Selection.
- Conclusions & Future Work.
Outline

- Introduction.
- Problem Statement.
- Proposed Methodology:
 - Phase I: Pre-processing.
 - Phase II: Segmentation.
 - Phase III: Feature Extraction.
 - Phase IV: Feature Selection.
- Conclusions & Future Work.
Introduction

- **Need for Arabian Horse Identification**
 - Biosecurity.
 - Retrieval after theft.
 - Fairness in competition.
 - Medical record management.
Outline

- Introduction.
- Problem Statement.
- Proposed Methodology:
 - Phase I: Pre-processing.
 - Phase II: Segmentation.
 - Phase III: Feature Extraction.
 - Phase IV: Feature Selection.
- Conclusions & Future Work.
Problem Statement

Traditional Identification Methods

Tattooing

Ear Tagging

Branding
Problem Statement

Using Biometric identifiers (contactless methods) for identification and getting rid of harmful identification methods.
Problem Statement

(a) Horse iris

(b) Human iris
Outline

- Introduction.
- Problem Statement.
- Proposed Methodology:
 - Phase I: Pre-processing.
 - Phase II: Segmentation.
 - Phase III: Feature Extraction.
 - Phase IV: Feature Selection.
- Conclusions & Future Work.
Phase I: Pre-processing

- Image Resizing
- Convert to grayscale
- Contrast Stretching
- Noise Removal

Input Image

Processed Image
Outline

- Introduction.
- Problem Statement.
- Proposed Methodology:
 - Phase I: Pre-processing.
 - Phase II: Segmentation.
 - Phase III: Feature Extraction.
 - Phase IV: Feature Selection.
- Conclusions & Future Work.
Phase II: Segmentation

Pre-Processing:
- Image Resizing
- Convert to grayscale
- Contrast Stretching
- Noise Removal

Segmentation:
- Otsu-IFOA
- Opening & Masking
Phase II: Segmentation (continued)

Otsu-IFOA Segmentation

Processed Image

Thresholded Image
Binary Mask
Segmented Area

Number of Pixels

0.015
0.01
0.005
0.001
0

gray levels

0 50 100 150 200 250 300

27/12/2017
Annual Conference of the Institute of Studies and Statistical Research 2017
Outline

- Introduction.
- Problem Statement.
- Proposed Methodology:
 - Phase I: Pre-processing.
 - Phase II: Segmentation.
 - Phase III: Feature Extraction.
 - Phase IV: Feature Selection.
- Conclusions & Future Work.
Phase III: Feature Extraction

Pre-Processing
- Image Resizing
- Convert to grayscale
- Contrast Stretching
- Noise Removal

Segmentation
- Otsu-FOA
- Opening & Masking

Feature Extraction
- Gabor Filtering
- TDCT
Phase III: Feature Extraction

(Gabor Filtering)
Phase III : Feature Extraction

(Gabor Filtering)
Phase III: Feature Extraction (TDCT)

Pre-Processing
- Image Resizing
- Convert to grayscale
- Contrast Stretching
- Noise Removal

Segmentation
- Otsu-FOA
- Opening & Masking

Feature Extraction
- Gabor Filtering
- TDCT
Phase IV: Feature Selection

Pre-Processing
- Image Resizing
- Convert to grayscale
- Contrast Stretching
- Noise Removal

Segmentation
- Otsu-FOA
- Opening & Masking

Feature Extraction
- Gabor Filter
- TDCT

Feature Selection
- DBPSO
The Flowchart of DBPSO

Generate and initialize particles with random position \((X) \) and velocity \((V) \)

\[F = \sqrt{\sum_{i=1}^{A} (\mu_i - \mu_0)^T (\mu_i - \mu_0)} \]

\(G_{best} = \{1,1, \ldots ,1\} \)

\(i=0 \)

Evaluate position (Fitness)

If fitness\((X) > \) fitness\((I_{best})\)

\(I_{best} = X \)

If fitness\((X) > \) fitness\((G_{best})\)

\(G_{best} = X \)

\(G_{best} \) at \(i+1 \) = \(G_{best} \) at \(i-1 \) & \(G_{best} \)

Update Position

Update Velocity

Return the best solution
DBPSO Results

- We have 1800 extracted features.
- 265 selected features using DBPSO.
Outline

- Introduction.
- Problem Statement.
- Proposed Methodology:
 - Phase I: Pre-processing.
 - Phase II: Segmentation.
 - Phase III: Feature Extraction.
 - Phase IV: Feature Selection.
- Conclusions & Future Work.
Conclusions & Future work

- Automatic *Periocular region* segmentation using Otsu-IFOA.
- Feature Extraction (Gabor Filter + TDCT).
- Feature Selection using DBPSO.
- Selected Features can be used for *Arabian Horse Identification System*.