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Chapter

4-Hydroxynonenal Is Linked to 
Sleep and Cognitive Disturbances 
in Children: Once upon the Time of 
COVID-19
Abdelmissih Sherine

Abstract

The better prognosis of COVID-19 in children conferred a higher survival rate,  
but a higher prevalence of post-COVID sequalae, including insomnia and defective 
cognition. COVID-19 triggered oxidative stress, with hyperlipidemia correlated 
with susceptibility to severe COVID-19. Consequently, lipids peroxidation could be a 
likely candidate for disease progression and sequalae. Hence, this overview explored 
one of the commonly studied lipid peroxides, 4-hydroxynonenal (4-HNE), in terms 
of gamma-amino butyric acid (GABA) and glutamate. Higher glutamate and lower 
glutamine, a GABA substrate, triggered severe COVID-19. Increased glutamate and 
inflammatory cytokines induced GABA endocytosis, reducing the anti-inflammatory 
and antioxidant effects of GABA. Defective glutathione antioxidant was detected in 
Down syndrome, the latter was associated with severe COVID-19. Increased 4-HNE, 
due to consumption of electronic devices and flavors containing 1-bromopropane, 
was increased in inflammatory neurologic disorders. A higher hippocampal 4-HNE 
triggered excitotoxicity and cognitive deficits. Hippocampal inflammation and 
loss were also evident in COVID-19. 4-HNE might play role in disturbing sleep and 
cognition in children during COVID-19, a hypothesis that could be verified in future 
research by redeeming 4-HNE in the sputum and urine of children. Currently, sup-
plying children with optimum dietary antioxidants, while rationalizing the use of 
flavors is to be encouraged.

Keywords: COVID-19, insomnia, 4-Hydroxynonenal, cognition, GABA, lipid 
peroxidation

1. Introduction

Until early January 2023, over 660 million cases were diagnosed with coronavirus 
disease (COVID-19), most cases residing in Europe with much less cases in Africa, 
and the United States being the most affected country [1]. When first recognized in 
late 2019 and early 2020, COVID-19 was thought of as an ‘adult and older’ disease, 
exempting the younger population. Later, this revelation was falsified by positive 
infected cases found among neonates and children. Despite lower death rates at 
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younger ages, COVID-19 survivors are mainly those in the pediatric age group. The 
milder disease was related to lower immune responses in children [2].

Knowing that COVID-19 has affected 6.3% of children aged 5–14 years old 
from December 30, 2019 till September 13, 2022 [3] would give us clues about the 
magnitude of post-COVID in children, even if definite evidence is still missing [4]. 
Reports outlining the possibility of asymptomatic disease occurring in children [5] 
suggest that the global prevalence of COVID in children may be much higher than the 
registered cases. In contrast, other studies highlighted that children were especially 
afflicted by hyperinflammatory multisystem syndrome [6–8]. The issue arose when 
some studies detected that recurrent infection is likely to occur in school children, 
compared to pre-school age, and that some of the affected children tested negative 
for viral antigen and antibodies and they did not shed the virus [9–11], which can 
lead us to infinite unexplored areas of research targeting whether the virus remains 
dormant or not, for how long and where, in the neurological system and/or elsewhere. 
Are there late-onset sequalae that could affect the future quality of life of young 
generations or even be transmitted to their offspring after decades? The anonymous 
fate of viral infection in children who survived but did not shed the virus should draw 
the attention of investigators toward the outcomes of COVID-19 on various aspects, 
including cognition as one crucial vector in childhood determining the ability to 
learn, develop new skills, and have a future fruitful life.

During the post-COVID period, survivors suffered neuropsychiatric symptoms, 
including anxiety and mood disturbances [12]. Such neuropsychiatric sequalae were 
attributed to the viral invasion of the brain [13] and neural control over the immune 
system [14]. In their retrospective cohort study, Taquet, Geddes, et al. [15] noticed a 
higher liability for insomnia during 6 months post-COVID, one plausible explanation 
was the impact of inflammatory cytokines over neuroendocrine sleep mediators [16].

Although a direct link between insomnia and liability for a more severe COVID-19 
was not conclusive, yet inferences could be made based on previous studies show-
ing that persons who had less than 7 hours of daily sleeping were three times more 
vulnerable to getting a flu attack [17]. An association between disturbed sleep or even 
prolonged sleep and a state of low-grade systemic inflammation was suggested [18, 19], 
the latter impaired the immune defenses against the respiratory pathogens [16, 20, 21], 
added to a higher risk of developing pneumonia [22]. The deleterious effects of dis-
turbed sleep over immunity were also emphasized in Module 2 of The National Institute 
for Occupational Safety and Health (NIOSH) [23] declaring more than 50% decline in 
the production of antibodies following influenza vaccination in presence of sleep shift-
ing, compared to regular sleep.

As the susceptibility to COVID-19 is higher with cardiovascular diseases, diabetes 
mellitus (DM), and obesity, and as dyslipidemia is common among these vulner-
able groups [24–26], a causal relationship might exist between lipid metabolism 
and COVID-19 morbidity. Apart from the structural, non-structural, and accessory 
proteins identified for severe acute respiratory syndrome virus (SARS-CoV-2), 
lipid-based structures remain to be identified, especially when knowing their pivotal 
role in viral fusion, entry, and replication and that the host lipid profile is altered 
following COVID-19 [27, 28]. The involvement of lipids in promoting the creation of 
severe acute respiratory syndrome (SARS-CoV-2) progeny is becoming increasingly 
an interesting entity that awaits further exploration. Interestingly, insomnia has been 
reported to alter lipid metabolism and trigger lipid peroxidation [29]. Both insomnia 
and lipid peroxidation were associated with cognitive decline [30, 31]. In this con-
text, this overview will focus on the relationship between COVID-19, insomnia, and 
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4-hydroxynonenal (4-HNE), as the most studied among lipid peroxides, on one side, 
and cognitive defects, on the other side.

2. COVID-19 in children: insomnia and cognitive defects

The American Academy of Sleep Medicine [32] has quoted from the Centers of 
Disease Control (CDC) that sleep disturbances among middle- and high-school stu-
dents were highly prevalent. This prevalence was also noticed in survivors of COVID-
19 who experienced long-term insomnia [33] with younger age being more vulnerable 
[34]. During COVID-19, higher liability to insomnia was also reported in students, 
compared to workers, and in undergraduates, compared to postgraduates [35, 36].

Novel stressors were superimposed with the emergence of COVID-19, includ-
ing locking down at home, studying in an isolated environment with no social 
interactions, lacking friends, missing both physical activities and teamwork-based 
learning, having one or more of beloved family members affected, added to dealing 
with stressed parents [37]. Learning at home has posed a greater stressful challenge 
to parents whose anxiety was transferred to their children [38]. All these stressors 
contributed to higher anxiety in children, and subsequent sleep issues [39], includ-
ing, inability to fall asleep, insufficient duration of sleep, excessive sleep duration, 
nightmares, and unstable sleep timings. In turn, disturbed sleep, by triggering mood 
swings, caused a further reduction in social interactions [40], and impaired psycho-
logical and physical well-being [41]. Interestingly, being home alone, using electronic 
devices during studying, playing, or chatting, were associated with poor sleep quality 
in children with autism spectrum disorder (ASD) [42].

Attention, as one of the cognitive domains, tended to decline with insomnia. 
Focused attention, detected by responding to a specific stimulus while overlooking 
other stimuli, was reduced with insomnia [43]. Vigilance (sustained attention) or 
the ability to keep alertness over time [44] was negatively affected by insomnia with 
reduced accuracy and prolonged time needed to perform vigilance-related tasks [45]. 
Similarly, shifting attention or the ability to adapt and modify the focus of atten-
tion, requiring a higher level of cognition [46], was defective in cases with insomnia 
[47]. However, some other studies did not prove these correlations, especially for the 
simplest form of attention, focused attention [48, 49].

Another cognitive domain, memory, was negatively impacted by insomnia 
[50, 51], whether working memory or that of the implicit (procedural) or explicit 
(declarative) categories. These three memory categories correspond to the inability 
of keeping information for a short period [46], learning new skills, and recalling a 
new learned material after a delay, respectively [52]. In a meta-analysis, there was a 
mild correlation between insomnia and working memory, yet the authors declared 
that results could be biased by the heterogenicity between studied groups in different 
studies. Other studies denied such an insomnia-memory relationship [48, 53].

Whatever is the magnitude of controversy regarding the correlation between 
insomnia and cognitive defects, most studies agreed about the correlation between 
stress and both cognition [54, 55] and sleep, especially, at a young age [56].

What links cognition to sleep at the neuronal level? In terms of memory, the role 
of glutamate, the main excitatory neurotransmitter in the brain, in the encoding and 
consolidation of memory through binding to its ionotropic receptors, N-methyl-
D-aspartate (NMDA), and its metabotropic receptors (mGLuRs), respectively, has 
been established [57, 58]. Li et al. [59] in a meta-analysis of the African population 
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concluded that the higher glutamate, and the lower its byproduct, glutamine, the 
more severe would be COVID-19 and related cognitive defects.

In astrocytes, glutamate is converted by glutamine synthetase to glutamine, the 
substrate of both gamma-aminobutyric acid (GABA) and glutamate [60]. GABA, 
the main inhibitory neurotransmitter in the mammalian brain, is also modulated, 
through NMDA activation when glutamate is released, then presynaptic auto-recep-
tors GABAB stimulation, mediating GABA endocytosis [61]. In the brain, more than 
50% of synapses are GABAergic [62], signifying the pleiotropic effects of GABA.

3. Gamma-aminobutyric acid linking sleep and cognition

GABA is an amino acid present in plants, bacteria, fungi, animals, and humans [63–65]. 
GABA in vertebrates is synthesized and metabolized (as shown in Figure 1) [66, 67].

GABA acts on two types of receptors, the fast ionotropic or ligand-gated ion 
channel, GABAA, and the slow metabotropic or G protein-coupled receptor, GABAB. 
The binding of GABA to GABAA results in chloride influx and a fast hyperpolariza-
tion of postsynaptic neurons. While GABAB receptors are present in presynaptic 
and postsynaptic [68]. Postsynaptic GABAB stimulation produces a slow, but long-
term hyperpolarization. Presynaptic GABAB activation reduces the release of many 
neurotransmitters, including GABA itself, yielding either an excitatory or inhibi-
tory brain signaling, depending on whether the suppressed neurotransmitter was 

Figure 1. 
GABA, glutamate, 4-HNE in COVID-19-related insomnia and cognitive defects. GABA in vertebrates is derived 
from L-glutamic acid or its salts, glutamate, by a decarboxylation reaction, catalyzed by GAD, and using PLP as 
a cofactor. After its release, GABA is uptaken by GATs 1, 2, and 3 as well as BGT-1 and metabolized by GABA-
transaminases (GABA-T). Upon glutamate release, it simulates NMDA, with subsequent presynaptic GABAB 
activation, mediating GABA endocytosis. Increased glutamate, along with reduced glutamine, aggravates COVID 
severity. GABA is secreted from B-lymphocytes to exert anti-inflammatory effects. GABA promotes antioxidants, 
reducing lipid peroxides, including 4-HNE. COVID-19 triggers inflammation and oxidative stress. Both COVID-
19 and increased hippocampal 4-HNE cause inflammation and neurodegeneration, precipitating insomnia and 
cognitive decline, which could be antagonized by GABA anti-inflammatory and neurogenesis effects. GABA: 
Gamma-aminobutyric acid; GAD: Glutamic acid decarboxylase; PLP: Pyridoxal 5′-phosphate; GATs: GABA 
transporters; BGT: Betaine GABA transporter; GABA-T: GABA-transaminases; Fe3+: Ferric; GSH: Glutathione; 
NMDA: N-methyl-D-aspartate; 4-HNE: 4-Hydroxynonenal; COVID-19: Coronavirus disease.
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inhibitory or excitatory. This means that if auto-receptors’ presynaptic GABAB is 
stimulated, GABA release is dampened leading to a depolarizing postsynaptic cur-
rent, or disinhibition. If a heteroreceptor GABAB was activated, glutamate release 
could be suppressed, which would favor an inhibitory status [69].

From functional perspective, GABA is implicated in sleep regulation and memory 
enhancement [70]. GABA deficiency can lead to insomnia, anxiety, and impaired 
stress responses [71–73]. The established role of GABA in sleep and sedation led to the 
wide use of benzodiazepines (BZs) as hypnotics and anxiolytics, acting by enhanc-
ing the binding of GABA to its receptors, GABAA [74, 75]. Unfortunately, BZs are 
associated with a high risk of tolerance and dependence [76] which mitigated their 
long-term use.

Despite the crucial role of GABA in the processes of sleep and cognition, it is 
not the only one, as inflammatory factors seem to contribute as well. In COVID-19, 
during the cytokine storm, excessive amounts of pro-inflammatory cytokines are 
produced, of which the tumor necrosis factor-alpha (TNF-α) induced the endocytosis 
of GABAA, possibly rationalizing the associated sleep disturbances.

In the cognition domain, fast-spike GABAergic interneurons play a crucial role 
in the generation of electroencephalographic gamma rhythms [77], as well as hip-
pocampal theta rhythm, corresponding to exploratory behavior [78]. Inhibitory 
postsynaptic potentials (IPSPs), generated by GABA, assist memory acquisition in 
rodents and humans [79, 80], and the progression to memory consolidation requires 
GABAB activation [81]. This GABA-cognitive function was experimentally verified 
when the passive avoidance learning of mice and rats was inhibited after the blockade 
of GABAB using baclofen [82, 83].

Furthermore, by promoting neurogenesis, GABA enriches long-term memory and 
learning processing [84]. This was emphasized in stressful conditions when mice with 
depressive-like symptoms exhibited defective neurogenesis and reduced microglia 
[85], along with reduced survival in neural stem progenitor cell culture [86]. In ASD, 
decreased glutamic acid decarboxylase (GAD), GABAA, and GABAB were observed 
in postmortem specimens [87], with GABAA reduction possibly underlying the 
co-existing delayed linguistic abilities [88], along with behavioral deficits; the latter 
being also demonstrated in transgenic animal models [89].

Although multiple sclerosis (MS) is mainly a disease of young adults, it is the 
most common neurologic disorder due to immunologic dysfunction in children and 
adolescents [90]. In MS, where 65% of patients have disturbed memory and atten-
tion, low plasma GABA was detected [91]. Recent reports revealed aggravated or 
de novo symptoms of MS associated with COVID-19 [92]. Hence, GABA might be a 
likely candidate for COVID-related cognitive derangement.

4. Inflammation, oxidative stress, and GABA: key targets in COVID

A growing body of evidence supports the secretion of GABA and its precursors, 
glutamine, and glutamate, from murine and human B-lymphocytes, [93]. While 
GABAA reduces T-cell response to antigens [94] and dampens inflammation, it 
endorses regulatory T-cells [95]. In turn, T-cells enhance the expression of GABA 
receptor subunits [96]. Additionally, GABA transporter-1 (GAT-1), found only on 
antigen-primed T-cells, arrested the proliferation of CD4+ and CD8+ T-cells [97]. Such 
GABA immunomodulatory effect could prevent the tissue damage elicited by inflam-
matory responses in cases of autoimmune diseases, as inferred from rodent models of 



COVID-19 Epidemiology in Children

6

DM and MS [98–100]. In patients with DM, the secretion of TNF-α and interleukin 
(IL)-6 (IL-6) from T-cells was successfully inhibited using GABA [101, 102].

Such systemic anti-inflammatory potentiality of GABA was detected also in macro-
phages and dendritic cells of rodents and humans, expressing the respective fast GABAA 
and slow GABAB receptors [103]. GATs dampen the functions and release of pro-
inflammatory cytokines as demonstrated in a mouse model of autoimmune encephalo-
myelitis (EAE) [97]. Thus, it was not surprising to find that the most common subtype 
of GABAA in the brain, (α1β2γ2), was also expressed in immune cells [104]. Conversely, 
immuno-stimulation and cytokines release promoted the neuronal sequestration of 
extracellular GABA [67]. In the brain, neuroinflammation, vascular insufficiency, and 
the pro-inflammatory cytokines, such as TNF-α, interferon-gamma (IFN-γ), IL-6 and 
IL-1β enhanced GAT expression, favoring GABA degradation [105–108].

In the context of lung diseases, GABA, along with enhanced GABAA and GABAB 
activities could limit acute lung injury in rodent models and ameliorate clinical 
outcomes in humans on ventilation [109, 110]. As an inhibitor of platelet aggregation, 
GABA, by inhibiting the formation of the thromboxane A2 [111], might have an addi-
tional clinical privilege in patients whose pulmonary thrombosis is attributed to the 
severe COVID-19 [112, 113]. These assumed benefits of early treatment with GABA in 
COVID-19 were verified in mice infected with mouse hepatitis virus (MHV-1) [114], 
another coronavirus whose symptoms mimic those of COVID-19 [115].

The COVID-associated anxiety and stress could have resulted in lowered immu-
nity [116], which could be reversed using GABA as was emphasized in human volun-
teers when oral GABA administration resulted in electroencephalographic evidence 
of relaxed alertness and anti-stress effects (higher alpha-to-lower beta) [117], while 
increasing salivary IgA [118], as a non-invasive index of enhanced upper respiratory 
immunity against bacteria and viruses [119].

Interestingly, extracellular glutamine, the GABA precursor, was implicated in 
viral replication of both DNA and RNA viruses to which SARS-CoV-2 belongs, by 
incorporation into the Kreb’s cycle after conversion by glutaminase (GLS) to alpha-
ketoglutarate (α-KG), so that the lack of glutamine hampered rhinoviruses replication 
[120]. Presumably, if GABA synthesis is inhibited, glutamine would be redirected to 
promote viral replication and, in case of viral infection, defective GABA synthesis 
would be anticipated secondary to the incorporation of glutamine in the viral replica-
tion cycle.

Knowing that COVID-19 can precipitate oxidative stress [121, 122] while 
GABAergic neurons are especially susceptible to the neuro-damaging effects of 
the reactive oxygen species (ROS), generated during oxidative stress [123], makes 
both GABA and oxidative stress likely candidates for aggravating the sequalae of 
COVID-19.

Hypercholesterolemia might perpetuate viral infections as was the case in mice 
infected with lymphocyte choriomeningitis virus (LCMV) [124]. Some viral infec-
tions and related treatments can induce long-term changes in lipid metabolism as 
well. After 12 years of SARS-CoV, survivors had higher cell membrane phospholipids, 
namely, phosphatidylinositol and lysophosphatidylinositol, attributed to cortico-
steroid administration during the infection [125]. In the post-infection period of 
SARS-CoV, lysocardiolipin acetyltransferase (LCLAT), phosphoinositide phosphatase 
(PIP), and diacylglycerol (DG) kinase, enzymes involved in lipid metabolism, were 
upregulated [126].

Coronaviruses consume the intracellular membranes of host cells to build their 
own replication nests called “double-membrane vesicles (DMVs),” where it preserves 
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its own viral proteins and robbed host factors, to ensure a suitable lipid bedding for a 
successful viral replication [127].

Of interest to our discussion is the increased total cholesterol (TC) in patients with 
COVID-19, favoring viral invasion, with a positive correlation to the severity of symp-
toms [93]. The lipid changes might be attributed to hypoxia and were also shared with 
patients having a chronic obstructive pulmonary disease (COPD) [128]. On the other 
hand, normal lipid metabolism seems preemptive in the context of pulmonary and 
neuronal disorders as sphingolipids were implicated in protection from a lung injury, 
added to their anti-inflammatory, anti-coagulant, along with their neuroprotective 
effects [129, 130]. Hyperlipidemia and oxidative stress during COVID make lipids 
peroxidation likely candidates for post-COVID syndrome.

5. Lipid peroxidation

Oxidative stress is conceived as an imbalance between oxidants and antioxi-
dants, in favor of oxidation. In physiology, such oxidative stress is minimal and 
well-equilibrated in a process known as “the redox potential.” It is noteworthy to 
mention that an imbalance in the antioxidant direction is deleterious and causes 
“reductive stress” [131].

Conversely, when the antioxidant mechanisms are overwhelmed, oxidative stress 
occurs. The consecutive reversible oxidative stress and irreversible oxidative damage 
are to be blamed for many pathologic conditions [132, 133]. With defective antioxidant 
mechanisms such as in the case of vitamin E (alpha-tocopherol) or vitamin C deficiency, 
excess reactive oxygen and nitrogen species are produced. The issue is that a propagation 
chain reaction perpetuates lipid peroxidation [131] as shown in (Figure 2). The interrup-
tion of chain reaction occurs when two free radicals are conjugated or when antioxidants 
break the chain.

Lipid peroxidation was formerly known for oils and fats in our diet. It involves 
oxidative damage to cellular structures, including cell membranes in plants and 
animals, causing cellular death. This destructive process includes the generation of 
lipid radicals, the uptake of oxygen, the re-organization of double bonds in unsatu-
rated lipids, and the production of breakdown products such as alcohols, ketones, 
alkanes, aldehydes, and ethers. Lipid peroxidation results in an easily breakable cell 
membrane with plenty of polyunsaturated fatty acids (PUFAs) and transition metals. 
Lipid peroxidation reduces membrane fluidity and makes it more permissible and 
easily invaded. Apart from the loss of cell membrane integrity, protein synthesis is 
disrupted, as well as macrophage function, along with derangement of chemotactic 
signals and altered enzyme activity [134]. All membranes of cellular structures are 
damaged, including those of mitochondria, microsomes, peroxisomes, and cell mem-
branes [135]. Lipid peroxidation toxicity affects the liver, kidneys, and to our interest, 
neurological structures, where it takes part in neurodegenerative, inflammatory, and 
infectious diseases [136].

Considering the brain as a susceptible organ to oxidative stress, the intracellular 
antioxidant, free glutathione (GSH) plays a crucial role by eliminating peroxides 
[137] in a reaction catalyzed by glutathione peroxidase (GSH-Px), oxidizing GSH 
to GSH disulfide (GSSG) [138]. Thus, the GSH/GSSG can be used as a determinant 
of the redox status of cells [139]. Defective GSH was previously correlated to Down 
syndrome in children [140]. Recently, Down syndrome was correlated to severe 
COVID-19 [141].
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Most of brain GSH is derived from the reducing action of GSH reductase (GR) 
over GSSG to get back GSH. Another less amount of GSH can be synthesized de novo 
from glutamate, cysteine, and glycine [142].

In contrast to the antioxidant GSH, one of the lipid peroxides, 4-hydroxynonenal 
(4-HNE), an α, β-unsaturated aldehyde, is a potent neurotoxin, derived from the 
oxidation of ω-6 PUFA of cell membranes [143], such as arachidonic acid, linoleic and 
linolenic acid.

6. 4-Hydroxynonenal

4-Hydroxynonenal (4-HNE) is described as a short-chain reactive carbonyl 
compound [144], having amphiphilic properties yet with lipophilic tendency 
[143]. Its high electrophilicity makes it reactive to the amino acid residues, namely, 
cysteine (Cys), histidine (His), and lysine (Lys), in a decrescendo order. 4-HNE 
can adduct to the cysteine residue of the “flippase” enzyme (amino phospholipid-
translocase), an enzyme that maintains lipid bilayer asymmetry by an ATP-
dependent process [145]. Forming Michael adducts with nucleophilic sites, 4-HNE 
can interact with cellular DNA, lipids, and proteins [146]. The destiny of  
4-HNE protein adducts is either proteolysis or covalent cross-linking. Additionally, 
4-HNE can inactivate GR, reducing the antioxidant ability of GSH [147]. In turn, 
physiological concentrations of GSH can revert 4-HNE protein adducts to their 
unadducted condition [148].

Figure 2. 
Propagation reaction of lipid peroxidation. Lipid peroxidation is initiated with hydrogen subtraction and oxygen 
addition. Hydrogen subtraction is promoted in PUFAs by the presence of a double bond of the RH group, leaving 
the carbon with an unpaired electron. When combined with oxygen, ROO is produced, generating ROOH, 
capable of repeating the hydrogen subtraction from another PUFA, perpetuating the chain reaction. When lipid 
peroxides interact with Fe+2, RO radicals are produced, when the interaction involves Fe+3, ROO radicals are 
generated. These reactions will end up with cytotoxic aldehydes and hydrocarbon gases as ethane. The interruption 
of chain reaction occurs when two free radicals are conjugated or when antioxidants, such as GSH, break the 
chain. PUFA: Polyunsaturated fatty acids; RH: methylene; ROO: Peroxyl; ROOH: Hydroperoxide; Fe2+: Ferrous; 
RO: Alcoxyl; Fe3+: Ferric; GSH: Glutathione.
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The metabolism of 4-HNE occurs by oxidative and reductive processes, employ-
ing enzymatic and non-enzymatic pathways [144], in addition to conjugation to 
GSH catalyzed by the glutathione-S transferases (GST), which contributes to a major 
part in the detoxification process [149]. Although all these detoxifying processes are 
present in the mitochondria [150], yet it seems that the mitochondria play little role in 
4-HNE degradation in intact tissue.

In the lungs, GST is more active than the liver, then comes the brain in the third 
place, however, the respiratory capacity to metabolize 4-HNE is limited by slow 
oxidative-reductive pathways, unlike the liver [151, 152]. 4-HNE can be detected in 
human breath and sputum [153] and its metabolites can be recovered in urine [154]. A 
slow metabolism of 4-HNE was previously reported when dealing with rat hearts and 
kidneys, along with other tissues [155].

To our knowledge, HNE concentration at or below 1 μM might be physiological, 
with in vitro toxicity at 10 μM–1 mM [156]. The physiological roles of HNE include, 
but are not limited to [see Table 1] [157–164]. Dianzani [156] mentioned that, in 
pathologic conditions, the high concentrations of 4-HNE suppress mitochondrial 
oxidation, lysosomal enzyme activity, adenyl cyclase, sodium pump, protein synthe-
sis, and cell proliferation. Also, while physiological 4-HNE concentrations can affect 
proteins, favoring proteolysis of the deformed proteins [165], only extra-physiologic 
concentrations of 4-HNE can increase membrane fluidity [166].

In inflammatory disorders such as osteoarthritis, 20 μM HNE suppressed the 
high nuclear factor-kappa beta (NF-κB) induced by TNF-α overexpression in human 

Targets of HNE Role

Neutrophils chemotactic factor [157] Increased inflammatory response to invading pathogens

AC [158] Catalyze the breakdown of ATP to yield cAMP

PLC [159] Hydrolysis of inositol phospholipids in cell membranes, yielding the 

intracellular second messengers: IP3 and DAG

Caspases [160] Protease enzymes that mediate programmed cell death, leading, for 

example, to tumor suppression and axonal degeneration

Hsp 70 [161] Increased antigens delivery to APCs Suppression of inflammation

Aldose reductase [162] Cytosolic NADPH-dependent oxidoreductase that catalyzes the 

reduction of monosaccharides, for example, the reduction of glucose 

to sorbitol, the first step in glucose metabolism

Hem oxygenases [163] The degradation of heme to CO, biliverdin and heme iron, mediating 

anti-inflammatory, anti-apoptotic, and potential anti-viral functions

γ-GCS [164] Catalyzes the production of

γ-glutamylcysteine from both glutamate and cysteine, and other 

glutamylpeptides and can be used as predictor of defective GSH redox

AC: Adenyl cyclase; ATP: Adenosine triphosphate; cAMP: Cyclic adenosine monophosphate; PLC: Phospholipase C; 
IP3: Inositol 1,4, 5-triphosphate; DAG: diacyl glycerol; Hsp 70: Heat shock proteins 70; APCs: Antigen-presenting cells; 
NADPH: Nicotinamide adenine dinucleotide phosphate hydrogen; CO: Carbon monoxide; γ-GCS: γ-glutamyl cys 
synthetase; GSH: Glutathione.
At physiologic concentration, HNE seems to exert immunostimulatory activity by enhancing neutrophils’ chemotactic 
factor, increasing the production of multiple intracellular second messengers, such as cAMP, IP3, DAG, mediate tumor 
suppression, and might promote axonal degeneration and aging, along with immune-stimulatory, anti-inflammatory, 
anti-apoptotic, and possibly anti-viral functions. HNE catalyzes glucose metabolism and interestingly, can increase 
antioxidant activity.

Table 1. 
Physiological targets stimulated by hydroxynonenal (HNE).
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osteoblasts [167]. While most studies focused on the link between 4-HNE and hepatic 
insult, few of them found that 4-HNE was also implicated in multiple respiratory and 
neurological disorders, such as bronchial asthma, COPD [168], Alzheimer’s disease 
(AD), and Parkinson’s disease (PD) [169]. The ability of 4-HNE to diffuse from one 
organ to another [170] might indicate the accumulation of HNE in the lungs, for 
instance, can affect the brain, and vice versa. Fortunately, GSH was able to suppress 
4-HNE protein adducts in the liver, lungs, and brain [152].

In COPD, HNE adducts were increased in bronchial, bronchiolar, alveolar, and 
endothelial cells as well as macrophages and neutrophils. In alveolar epithelium, HNE 
adducts were inversely correlated to forced expiratory volume in 1 sec and positively 
linked to the pro-fibrotic cytokine, transforming growth factor-beta (TGF-β) [171]. 
In rat alveolar epithelial cells, HNE induced glutamylcysteinyl glycine (GCS), the 
rate-limiting enzyme in GSH synthesis [172], and enhanced the expression of antioxi-
dants by recruiting nuclear factor erythroid 2-related factor-2 (Nrf2) [173, 174].

In vitro exposure to mild stress assisted the accelerated GSH-mediated removal 
of HNE and enhanced resistance to oxidative stress [175], which might not apply to 
chronic stress when antioxidants are consumed.

Measuring HNE in umbilical cord plasma, it was increased in full-term newborns 
exposed to acidosis and in full—as well as pre-term neonates experiencing asphyxia 
when compared to healthy controls [176]. A suggested role in autoimmunity was 
reported in children with systemic lupus erythematosus (SLE) when plasma HNE was 
increased, especially during the active disease stage [177].

The brain is a vulnerable organ that can be affected by oxidative stress owing to its 
relatively lower antioxidant capacity against a higher oxygen consumption rate, added 
to the abundance of PUFAs in neuronal cell membranes [178]. Upon 12-day exposure 
of rats to oral 1- bromopropane (1-BP), a cleaning agent for electronic and optical 
instruments and an intermediate in the synthesis of pharmaceuticals and flavors, the 
animals demonstrated behavioral evidence of impaired cognition with underlying 
oxidative stress as shown by the reduced level of GSH versus increased GSSG, owing 
to the inhibitory effect of 1-BP over GR, with subsequently increased 4-hydroxynon-
enal (4-HNE) and malondialdehyde (MDA) [179]. The increased 4-HNE was also rep-
licated in patients with AD showing mild cognitive dysfunction [180]. It is to be noted 
that while human exposure to 1-BP is by inhalation, yet, in experimental animals, the 
inhalation route might not yield similar neurological effects as the oral route.

4-HNE can form adducts with glutamate transporter, excitatory amino acid 
transporter 2 (EAAT2) [181], dopamine transporter, sodium pump [182], dopamine 
1 (D1)-like transporter [183], and immunoglobulins [184]. In cultured rat cerebro-
cortical neurons, HNE uncoupled cholinergic and glutamatergic receptors from 
the GTP-binding proteins [185]. In patients with ischemia–reperfusion and stroke, 
plasma HNE was elevated [186]. Immunohistochemical assay of the brain lesions 
in patients with the progressive demyelinating disease, multiple sclerosis, and the 
dominant autosomal disorder, Huntington’s disease (HD), detected increased HNE 
[187, 188], along with elevation of the inflammatory marker C-reactive protein in 
serum of patients with advanced HD. In rat hippocampal cell culture, 10 μM HNE 
hampered sodium pump activity, resulting in increased intracellular free Ca2+ 
and predisposition to excitotoxicity [189]. The hippocampus is well known for its 
relevance to both cognition [190, 191] and insomnia-related cognitive issues at 
all ages, including children [192, 193], and inflammation and loss were recently 
reported in COVID-19 [194].
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7. Hydroxynonenal- and GABA-targeted therapies

Based on the presumptive involvement of HNE in COVID-related insomnia and 
subsequent cognitive dysfunction, HNE-targeted therapy might offer an exit door-
way that might rescue the young generation. For instance, carnosine, a dipeptide 
(β-alanyl-L-histidine) abundant in mammalian skeletal muscle, can inhibit the cross-
linking of HNE protein adducts [195], and its analogs showed a similar neuroprotec-
tive effect as emphasized in rats [196].

Nutritional support seems crucial to sustaining the growth and development of 
childhood processes, including those related to their emotional, cognitive, and behav-
ioral aspects. Above all, supplying dietary antioxidants, including vitamin E, vitamin 
C, and glutathione, could be helpful. The consumption of wheat germ oil, sunflower 
oil and seeds, hazelnuts, and peanut butter, as sources of vitamin E, and red and 
green pepper, orange, kiwi, and broccoli, providing vitamin C, with recommended 
daily dietary allowances at 4–13 years old of 7–11 and 25–45 mg, respectively [197].

Despite the controversies regarding the extent of systemic GABA to cross the BBB 
[198–200] as quoted by Tian et al. [114], supplying dietary GABA could add some 
benefit as an adjuvant to COVID treatment, especially since GABA has antioxidant 
properties [201, 202], GABA can be obtained from tomatoes, rice, soybean, and 
fermented food [70]. It is worthwhile that this policy can be adopted in the context 
of cognitive affection in children whose anxiety and insomnia could be the major 
contributing factors to the post-COVID syndrome.

8. Conclusion

Lipid peroxidation, along with inflammatory crisis, plays a crucial role, not only 
in the prognosis of COVID-19 but also in neurological sequalae, namely, sleep and 
cognitive issues, by affecting both GABA and glutamate neurotransmission.

4-HNE might have some role in both COVID-19 and its neurological sequalae, 
triggering hippocampal inflammation and neurodegeneration, by disturbing gluta-
mate/ GABA neurotransmission.

Perhaps a nutritional supply of antioxidants and abstaining from the consumption 
of flavors could support our children to maintain optimal sleep and develop cognitive 
skills. The rationale use of electronic devices is also recommended. A more vigorous 
investigation is still needed to verify the hypothesis of 4-HNE involvement and to 
explore the feasibility of GABA—and HNE-targeted therapy in children who survived 
COVID-19 with residual issues regarding sleep and cognition.

Acknowledgements

No acknowledgments. Funding: The author declares that no funding resources 
were provided.

Conflict of interest

The author declares no conflict of interest.



COVID-19 Epidemiology in Children

12

Author details

Abdelmissih Sherine
Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt

*Address all correspondence to: drshery_wa@yahoo.com;  
drshery_wa@kasralainy.edu.eg

Notes

• COVID-19 triggers insomnia and cognitive defects.

• Higher glutamate, with subsequent low GABA, was associated with severe 
COVID-19.

• Electronic Devices and flavors could lead to increased 4-HNE.

• Increased 4-HNE caused hippocampal inflammation, an area implicated in sleep 
and cognition.

• Supplying pediatric nutrition with antioxidants and abstaining from flavors 
consumption and overuse of electronic devices might prove preemptive in 
COVID-19, and related sleep and cognitive issues.
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