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Chapter

Perspective Chapter:  
Neurotoxins and Erythrocytes - A 
Double-headed Arrow
Sherine Abdelmissih

Abstract

The prevalence of aggression has become an increasing problem that threatens 
lives, from suicidal ideation to homicide. Multiple factors contribute to such issue, 
including genetic, psychological, familial, economic, environmental, dietary habits, 
endocrine disturbances, psychiatric disorders, and neurological disturbances, making 
it resistant to control. If key targets can be identified, it might be possible to find a 
cure. To date, glutamate has been one culprit involved in aggression, instigated by 
inflammatory mediators and reactive oxygen species. Monosodium glutamate as well 
as omega-3 and-6 polyunsaturated fatty acids -components of our modern diet- mod-
ulate the inflammatory state, hence, affecting brain and blood glutamate, the latter 
is an essential neurotransmitter sharing in the antioxidant capacity of erythrocytes.
Hence, the erythrocytic or blood glutamate assay, along with members of the inflam-
matory cascade, might be a cost-effective diagnostic and prognostic tool for aggres-
sive behavior, especially feasible for assessing the efficacy of the intervening dietary 
and/or pharmacological measures to prevent such potentially devastating behavior.

Keywords: aggression, glutamate, monosodium glutamate, omega-3 fatty acids, 
omega-6 fatty acids

1. Introduction

Neurotransmitters in the brain are classified into inhibitory and excitatory. Each 
single neurotransmitter is a gear in an engine whose release is crucial for the brain's 
equilibrated machinery to proceed. The overflow of one neurotransmitter draws a 
cascade of events that disturb this discrete brain signaling, so does its deficiency. 
Accumulation of glutamate (Glu), the most abundant amino acid excitatory neu-
rotransmitter, has been implicated in many neurological disorders, including aggres-
sive behavior and the tendency to violence [1].

Exposure to ongoing or anticipated threatening events provokes a multitude of 
instinctive behavioral reactions, that enhance the ability to accommodate, survive, 
and sustain the stress, whether acute or chronic [2]. Among humans, stress-related 
behavior might be controlled relative to the magnitude of stress and its foreseen 
consequences; but in other cases, it might extend far beyond logic thinking and 
rational control, building up a crescendo aggressive attitude, that, instead of being a 
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reactive physiologic response, becomes an intuitive pathologic one, that, even, needs 
no impulse to ignite.

Since the brain is not totally segregated from the peripheral system, variations of 
blood Glu can mirror brain Glu turbulence, hence, blood assays have been suggested to 
diagnose and follow-up neurological diseases. Assaying blood Glu might offer a non-
invasive, cost-effective, and quantitative way to assess aggression for a better control, 
comparing the potency and efficacy of various interventions that address this issue. 
Therefore, we can gather and analyze data, derived from blood assays of glutamate and 
inflammatory markers in cases exhibiting aggressive behaviors, to be invested for future 
implementation of treatment plans and optimum choice of medications, instead of a 
trial-and-error policy that wastes the time and delays improvements in which timing 
would be critical for the patient and his/her family, or surroundings.

2. Aggression

2.1 Types of aggression

Albeit some difficulty to differentiate between aggressive acts that are reactive 
and defensive and those that are intentionally destructive, yet psycho-socialists have 
defined aggression as a forceful physical or symbolic action that can be motivated 
(instrumental or proactive, and affective or reactive aggression), or deliberately 
damaging (aggression), whether directed to other person that does not wish to be 
harmed, living creature, the environment, or one’s self, leading to physical or psycho-
logical harm [3]. So depending on the intent of the act, affective, reactive, defensive, 
or impulsive aggression is characterized, so that tough responses are not intended to 
harm. The opposite would be the predatory, premeditated, instrumental, proactive, 
or cognitive aggression when the intention is to hurt someone [4].

Not all aggressive reactions are physical, some can be psychological, verbal, sexual, 
social, or racial. The type causing actual physical harm is termed “violence” and is the 
extreme of aggression [5]. Nonphysical aggression is the more common to observe, 
yet the more difficult to track and punish, see examples [6, 7].

In terms of pharmacotherapeutics, we have the treatable secondary or medical 
aggression, related to psychologic disorders that respond to medications, includ-
ing antipsychotics and antimanics, and the primary impulsive aggression that is 
addressed using other specific agents [8], although, in absence of psychopathology, 
seems resistant to manage [9].

2.2 Epidemiology of aggression

Two-million people are annually exposed to workplace violence, with 50% of cases 
falling among healthcare workers, and 7% of fatalities are ascribed to physical harm. 
Domestic violence affects 10 million people yearly in the United States, with an eco-
nomic burden of more than 12 billion dollars per year. These estimates are expected to 
rise over the next 20 years [10].

Lifestyle changes during the coronavirus disease (COVID-19) pandemic, including 
the distress of getting infected [11], poor sleep quality, a higher prevalence of post-
traumatic stress disorder among hospitalized patients [12], and the social isolation 
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of the recommended lockdown, increasing the incidence of domestic violence and 
abuse toward children, in case of a violent family member, with limited access to 
community-based support and assistance [13], provoked depression, anxiety, and sui-
cidal behavior [14]. The evolving stressful life conditions that followed the COVID-19 
lockdown triggered violent attitudes and mental health issues, consequent to unem-
ployment, and financial instability, while struggling to satisfy the basic needs of life, 
being helpless to find new job opportunities, and losing the liberty to have interac-
tive social conversations and relations, concurrent with the compounded feeling of 
loneliness, uncertainty, and trepidation, considering the “others” potential threats 
of disease transmission. Neurological symptoms during the pandemic were variable 
and included suicidal behavior, agitation, paranoid delusions, bizarre behavior, and 
weird posture [15, 16]. Assumptions were made about the involvement of encephalitis 
[17, 18] and medications used in the treatment protocol of COVID-19 such as steroids, 
chloroquine derivatives, and benzodiazepines [19].

2.3 Aggression as related to other medical issues

Among health problems, pain was the most significant medical issue that can lead 
to aggression. Reports advocated respiratory distress as a cause of aggression [20].

Neurological disorders can provoke aggression as in some cases of attention deficit 
and hyperactivity disorder, autism, epilepsy, and Alzheimer’s disease (AD) [21].

Psychological issues complicated by secondary aggression include bipolar affective 
disorder, schizophrenia, major depression, general anxiety disorder, post-traumatic 
stress disorder, and antisocial personality [22]. Substance abuse and/or withdrawal 
was an undeniable culprit, especially alcohols and hallucinogens [23].

Anemia, one of the most prevalent worldwide [24], was involved in aggressive 
cases [25–27]. Furthermore, iron deficiency can contribute to mood and behavioral 
disturbances, owing to its crucial role as a co-enzyme for the production and release 
of neurotransmitters [28].

Iatrogenic aggression can be seen with medications such as dopaminergic agents 
[29], antidepressants [30], glucocorticoids, testosterone, and androgenic steroids [31].

2.4 Diagnosis and management of aggression

There is no consensus concerning laboratory or imaging tools to diagnose 
aggression. But assessments converge on reporting either the consequences or some 
etiological factors such as substance abuse, toxicological screening, or psychologi-
cal disorder [10]. While most pharmacologic treatments have long converged on 
controlling the causative factors of aggression, now, addressing the deliberate hostile 
behavior as an isolated disorder is getting more attention.

Experimental dietary manipulation deterred 2-year aggression in a dog using 
a diet regimen whose plan was based on hematologic, biochemical, and imaging 
investigations [32].

Presumably, investigating key mediators of aggression might help control primary 
aggression, for which psychological assessments failed to find a clue. Researchers 
suggested neuronal mediators that might lower the aggression threshold, including, 
but not limited to, dopamine (DA), serotonin (5-HT), gamma-amino butyric acid 
(GABA) [33, 34], and glutamate (Glu) [35].
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3. Glutamate

3.1 Glutamate as brain neurotransmitter

Glutamate (Glu) is a nonessential and most abundant free amino acid, excit-
atory neurotransmitter in the brain. It is released through the glutamate-cystine 
exchange system (xC-system) in exchange of cystine at a 1:1 ratio, also used for 
the synthesis of the brain antioxidant, glutathione (GSH). Its central existence 
is not limited to the synapse, but it projects to extra-synaptic sites through 
ionotropic (iGluRs) and metabotropic glutamate receptors (mGluRs) [36]. The 
ionotropic receptors comprise three types, N-methyl-D-aspartate (NMDA), 
2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA), and 
kainate.

To establish a synaptic neurotransmission, glypicans, the synapse-forming 
proteins secreted by astrocytes, increase the number and activity of postsynaptic 
AMPA receptors, amplifying the electrical current to open the Mg2+-gated NMDA 
receptors. In the brain, micromolar levels of glycine, an inhibitory neurotransmitter, 
are sufficient to saturate NMDA for full functioning [37]. The ionotropic receptors 
are connected to their intracellular second messengers, stargazine, D-serine, and 
nitric oxide synthase, by postsynaptic density proteins (PSD95) [38], controlled by 
the immune (glial) cells, astrocytes, and microglia [39].

Glu diffuses binds to mGluRs on the astrocytic surface, triggering the release of 
the chemokine, CXCL12/stromal cell-derived factor (CXCL12/SDF1) [40], implicated 
in preclinical models of anxiety [41], urging microglia to release small physiologic 
quantities of tumor necrosis factor-alpha (TNF-α) [42]. By binding to astrocytes, 
TNF-α regulates Glu clearance, to ensure a well-controlled neuronal excitation, by 
immune-to-glutamate signaling [43].

The glial cells, microglia, astrocytes, and oligodendrocytes, communicate on a 
large-scale [44], conveying transsynaptic information along large brain regions [45]. 
The net result would be a presynaptic Glu release propagated and reflected on Glu 
release and uptake at distant sites [46].

Astrocytes, of the fibrous type, nurture and protect the unmyelinated nodes of 
Ranvier, while oligodendrocytes exert the same function for myelin sheath and cells 
[47]. While astrocytes of the fibrous type expand the white matter of the brain, astro-
cytes of the protoplasmic type span the gray matter of the brain, branching multiple 
times to yield fine processes that encase blood vessels at one end, forming part of the 
blood–brain barrier (BBB) [48], while surrounding thousands of synapses forming 
“astrocytic cradles” [47], provided with plenty of Glu transporters, that mediate Glu 
clearance [38] and keep Glu from spilling over into the extra-synaptic space [49].

Glu is cleared by excitatory aminoacids transporters (EAAT) of the endothelium 
of cerebral blood vessels as well as by passive diffusion through BBB to the systemic 
circulation [50, 51]. The EAATs-mediated Glu uptake is impaired during immune 
activation (Figure 1) [52–58].

Interestingly, reducing plasma Glu accelerated its clearance from the brain 
to the blood. Pharmacologically, this can be accomplished by the administration 
of inducers of the Glu metabolizing enzymes, serum Glu oxaloacetate (SGOT), 
and serum Glu pyruvate transaminase (SGPT) [43]. Experimentally, this Glu 
scavenging policy was successful to counteract excitotoxicity in animal model of 
stroke [59].



5

Perspective Chapter: Neurotoxins and Erythrocytes - A Double-headed Arrow
DOI: http://dx.doi.org/10.5772/intechopen.108342

3.2 Glutamate and aggression

An epigenetic mutation in the promoter region of BEGAIN, the gene expressing 
PSD95, involved in Glu receptors signaling, was identified in postmortem specimens 
of suicidal depressed patients [60]. A preclinical model of prenatal viral exposure 
incriminated in schizophrenia and autism spectrum disorders resulted in reduced 
PSD95, with overwhelming behavioral chaos [61].

Exposure to stress reduced a specific type of oligodendrocytes, NG+ cells, in labo-
ratory animals [62], that share in glutamatergic and GABAergic synapse formation 
[63, 64], eventually impairing EAATs, with subsequent brain Glu overload [62].

A hypothalamic hamartoma (a congenital malformation) with excessive glutamic acid 
decarboxylase (GAD), enzyme involved in the synthesis of GABA from Glu, was accom-
panied by impulsive aggression, which improved after surgical resection of the deformity 
[65]. Glu has been targeted by various antiepileptic medications, many of which were 
successfully introduced in psychiatry to control psychopathologic aggression [66].

Experimental animals can be used to model both types of aggression, hyperarousal 
or defensive, and hypo-arousal or predatory, corresponding to the impulsive and 
proactive types in humans, respectively. In different species, from fish to humans, Glu 
was implicated in the hypothalamic elicit of impulsive aggression [67]. Despite the 
involvement of other neurotransmitters in aggression, such as DA and noradrenaline 
(NA), yet it seems that they operate through glutamatergic neurons. Preclinical 
research indicated that Glu might be the leading mediator of aggression, as identi-
fied in cats, rats, and hamsters [68, 69]. Genetic studies in mice linked the severity 
of aggressive traits to the Glu ionotropic receptor AMPA3 gene (Gria3) [70]. More 

Figure 1. 
Glutamate clearance and immunomodulators. Glu is taken up by astrocytes, driven by Kir4.Kt, where both Glu and 
NH4 yield the inert, Gln, by the action of GS. de novo Gln is transported to neurons either, to be re-converted to 
Glu, or to be transaminated to aspartate, or to be decarboxylated to GABA. Glu, synthesized from Gln, is packaged 
and stored in synaptic vesicles via VGLUT1–3. Membrane EAATs are synthesized in the endoplasmic reticulum 
and modified in the Golgi apparatus, before their expression on the surface. Their gene promoters are responsive 
to NF-κB. This is followed by their internalization either to recycle back to the surface or to be phagocytosed by 
lysosomes. EATTs are suppressed by TNF-α and IL-1β, rendering them insufficient for Glu clearance.
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astonishing was that in mice subjected to social isolation and depicting aggressive 
behavior, NMDA subunits were highly expressed in the hippocampus, while down-
regulated in the prefrontal cortex, the area of judgment and reasoning [71]. In human 
studies, the elevation of Glu in cerebrospinal fluid (CSF) was associated with impul-
sive aggression as well [1].

Nonetheless, the link between Glu and aggression is still confusing, noting the 
opposing effects of NMDA antagonists, when at the low dose they aggravate aggres-
sion, while at a high dose they soothe aggression [36]. Further work is also needed to 
track discrete Glu circuity in specific brain areas.

4. Blood glutamate and brain glutamate: a double-headed arrow

In erythrocytes, as in brain, a continuous Glu supply is required to synthesize the 
antioxidant, GSH, along with cysteine and glycine, by aid of the enzymes, glutamate 
cysteine ligase (GCL) and GS. As the erythrocytic cell membrane is impermeable to 
Glu [72], erythrocytes synthesize de novo Glu from either alpha-ketoglutarate using 
alanine aminotransferase (ALT), and aspartate aminotransferase (AST), or Gln using 
glutamine aminohydrolase (GA) [73]. As the oxidant, hydrogen peroxide (H2O2), 
traverses readily; in diseases with oxidative stress, erythrocytes capacity to synthesize 
more GSH is increased, using the endogenous Glu precursors, Gln and/or alpha-
ketoglutarate, which exogenous supply was demonstrated to accelerate this process 
[74]. Recently, GA was proposed as one of the most powerful predictors of COVID-19 
prognosis, based on case reports of critically—ill patients, indicating glutaminolysis 
and shift of glycolysis from anaerobic to aerobic, enriching Gln/Glu metabolic path-
ways, as was formerly detected in seizure disorders and inflammatory diseases [75].

Immune cells express Glu cognate receptors that regulate their functions. 
T-lymphocytes exhibit both iGluRs and mGluRs that respond to Glu in a dose-dependent 
way. In the nanomolar-micromolar range, Glu acts on ionotropic receptors, stimulating 
T-cells migration, and proliferation. In pathologic conditions, at high millimolar Glu 
concentration, metabotropic receptors are activated leading to suppression of T-cells 
proliferation, versus increased inflammatory cytokines release. By acting on mGluRs, 
Glu induces the apoptosis of memory and naïve B-lymphocytes [76].

In turn, iron deficiency anemia was involved in irreversible fetal brain alterations 
of excitatory and inhibitory neurotransmitter receptors. In a study [77], using an 
experimental model of stroke due to intracranial hemorrhage, several blood compo-
nents modified the AMPA- and NMDA-mediated synaptic responses. While the whole 
blood inhibited the synaptic activity; diluted blood precipitated a prolonged epileptic 
NMDA synaptic activation; plasma and part of leukocytes evoked neuronal epilep-
tiform discharges; and fraction of red blood cells, initially, stimulated the receptors, 
followed by their depression. In cerebral ischemia, brain Glu was found to rise [78], 
culminating into excitotoxicity [79].

Despite the inability of Glu to penetrate the BBB [80], the brain is not absolutely 
segregated from the effects of fluctuating blood Glu.

As a positive correlation has been reported between Glu levels in the blood and 
either CSF [81] or CNS [82], it was not surprising that, in 2018, Madeira et al. [83] 
assayed blood Glu and Gln in patients with recent onset and chronic schizophrenia 
to find that blood Gln/Glu ratio was increased with recent onset, versus decreased 
with long-standing disease. This complies with other studies reporting a low blood 
Glu with the first psychotic episode [84], versus high blood Glu in cases with chronic 
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schizophrenia [85]. This peripheral Glu change was previously mirrored in the brain 
by increased CSF Glu in chronic cases and a high Gln/Glu ratio in CSF of new-onset 
disorder [81].

In terms of pharmacological approach, typical antipsychotics were associated with 
lower blood Gln/Glu ratio than with atypical medications of the same category [83]. 
The inconsistent link between blood and brain Glu could be related to the altered eating 
behavior induced by either the atypical antipsychotics [86] and/or the disease itself [87].

5. Diet, glutamate, neuroinflammation, and neurotoxicity

5.1 Monosodium glutamate (MSG): a glutamate receptor agonist

Monosodium glutamate (MSG) is the sodium salt of L-glutamic acid. It is a natural 
dietary component found in dairy products as Roquefort and Parmesan cheese, and 
vegetables such as tomatoes, mushrooms, and broccoli. The unique taste of MSG, 
known as an essential component of the Asian cuisine, evoked its widespread use 
in restaurants and canned food all over the world to improve food palatability. The 
L-glutamic acid itself and its disodium salt have a milder taste. The average daily 
intake in humans ranges from 0.3 to 1.0 g [88].

Despite being generally recognized as safe (GRAS) by the food safety regulatory 
agencies, animal and human studies continue to raise concerns about its potential 
toxicity. In 2006, the European Food Safety Association (EFSA) included MSG in the 
list of food additives for which established acceptable daily intake (ADI) was reas-
sessed to be 30 mg/kg, considering its no-observed adverse effect level (NOAEL) that 
is 3200 mg/kg.

Focusing on its neurotoxicity, MSG has been alleged of causing stroke, epilepsy, 
schizophrenia, anxiety, depression, and AD [89], all of which predispose to aggres-
sion. This food additive acts on Glu receptors, triggering an array of inflammatory 
events and oxidative stress [90], especially with chronic consumption of high doses 
[91]. By binding to hepatic Glu receptors, excess NH4 ions are produced, with the sec-
ondary generation of reactive oxygen species (ROS), and eventual hepatotoxicity [92], 
impairing MSG metabolism, leading to its blood accumulation, and increasing the 
likelihood of neurotoxicity. Downregulating mGluRs and NMDA receptors was one of 
the protective mechanisms exerted by curcumin against MSG neurotoxicity [93].

Multiple experiments tracked the behavioral and neurochemical events associated 
with MSG [94–99]. Notably, extrapolating animal studies employing the systemic 
route of administration to human practice may flaw results interpretation, bypassing 
the usual metabolic breakdown of oral MSG ingested in food [100].

Interestingly, a positive link was detected between MSG and hemoglobin levels 
[101] and it was found to reduce the percentage of blood lymphocytes as well [102]. 
Moreover, the oxidative stress during MSG toxicity overwhelmed the Glu-derived 
antioxidants generated by erythrocytes [103].

5.2  Omega-3 (ω3) versus omega-6 (ω6) long-chain polyunsaturated fatty acids 
(LC-PUFA)

Polyunsaturated fatty acids (PUFA) are those containing two or more carbon 
double bonds, classified as omega-3, -6, and -9. Among long-chain polyunsaturated 
fatty acids (LC-PUFA), omega-3 (ω3), and omega-6 (ω6) can be discriminated. While 
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the literature recommended the addition of ω3 sources in the diet, they advised to 
limit the consumption of its nonidentical twin, ω6. A debatable issue was to whether 
focus on the relative ω6 to ω3 consumption, versus determining absolute figures for 
each [104].

Despite being essential FA, ω6 PUFA have a narrow therapeutic window, requiring 
a rational dietary consumption to establish physiologic, rather than deleterious effects 
[105]. The major dietary ω6 is linoleic acid (LA), converted to other ω6 products as 
γ-linolenic acid and dihomo-γ-linolenic acid, and from which arachidonic acid (AA) 
is derived, yielding pro-inflammatory molecules and ROS. Rich sources of LA are veg-
etable oils such as corn, sunflower, soy, and canola oils, while AA is present in meat 
and eggs mainly [106]. The recommended daily intake of LA in adult men is 17 g/day, 
to be further reduced for adult women to 12 g/day [107].

On the other side, the major component of ω-3 PUFA is the alpha-linolenic acid 
(ALA), contained in chia seeds, black walnuts, and soybean oil, and converted in the 
liver to docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and decosapen-
taenoic acid (DPA) [108, 109]; the latter is a potential reservoir for DHA and EPA 
[110]. The consumption of fatty fish, such as salmon, herring, sardines, mackerel, and 
cod liver oil, or the substitution with fish oil, as rich sources of ω3 PUFA, was adopted 
to improve neurological functions, especially that relevant synthesizing enzymes are 
lacking [111] and the plant-based sources containing ALA are insufficient for humans 
[112], due to the incomplete hepatic conversion to EPA and DHA [113].

The fatty acid composition of the brain consists of palmitate, AA, an ω6 PUFA, 
and DHA, as the major ω3 PUFA, other members of the latter group are present, 
but in very small quantities [114]. The brain depends on the uptake of ω3 PUFA 
from dietary or liver sources. Once absorbed from diet, ω3 PUFA are transported 
by lipoproteins and albumin to the blood stream [115]. In adult mice, blood and 
brain levels of ω3 PUFA (DHA and EPA) were dependent on dietary consumption 
[116]. Free fatty acid receptor (GPR40), which ligands include several medium and 
LC-FA, saturated or unsaturated, is ubiquitously expressed in the brain. If ω6 binds to 
GPR40, neurodegeneration follows. If the ligand is ω3, serum BDNF is increased with 
eventual synaptogenesis and neurogenesis [117].

Poor nutrition has long been declared as one of the risk factors to antisocial 
personality disorder in adulthood [118] and increased aggression during childhood 
and adolescence [119]. A defective supply of DHA from ω3-PUFA, an integral part of 
astrocytic cell membrane, caused an impaired Glu clearance, with subsequent altered 
behavior in adulthood [120]. Several human studies adopted ω3 PUFA to hinder 
aggression [121–127]. Omega-3 deficiency favors the production of inflammatory 
cytokines, disturbing Glu homeostasis (Figure 2) [43, 128–132]. Inflammation was 
linked to aggressive behavior in lower mammals and humans [133, 134]. There seems 
to be a bidirectional interaction, so that aggression by itself can precipitate oxidative 
stress, as was demonstrated in birds subjected to a violent interaction [135].

Despite studies claiming the benefits of ω3 PUFA in neurological disorders, a lack 
of consistency remains. Moreover, most studies addressed ω3 PUFA without discrimi-
nation between individual constituents. Scarce work investigated ω3 short-chain 
PUFA claiming their additional neurological benefits [136]; however, insufficient 
data exist at the current time.

In blood, erythrocytes content of ω3 PUFA is dependent on either exchange with 
plasma lipoproteins, in the case of EPA, or erythrocytic turnover, in the case of 
DHA and DPA [137]. Surprisingly, giving EPA supplementation, but not DPA, was 
reflected at the level of erythrocytes. Other blood components seem to have a special 
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affinity to supplements of different ω3 PUFA members. Blood levels and response 
to supplementation are subjected to multiple factors, related to genetics, gender, 
interindividual variability ranging from an 82% decrease to a 5000% increase, and 
the type of supplement used [138–141].

Many years ago, low blood ω3 was detectable in impulsive offenders [142]. 
Blood levels of ω3 were negatively correlated to behavioral indices of aggression 
[143]. Blood samples were recommended when dealing with ω3 supplementation, 
being better predictors of aggression, that can discriminate responders from no- or 
low-responders and can tackle interactions with other nutrients [127]. Recently, a 
total daily dose of 960 mg DHA and EPA was provided to adult male prisoners in a 
correctional center as fish oil capsules reduced their aggression, most of them were 
nonaggressive at baseline [144]. In this trial, non-fasted blood samples were with-
drawn, and plasma was separated from packed erythrocytes. Then, erythrocytes 
were prepared for fatty acid analysis [145]. Individual fatty acid analysis was done, 
then ω3 index was calculated as the sum of EPA and DHA, to be expressed as the 
mol percent of total erythrocyte fatty acids [146]. Participants with an index of 6% 
or higher were unlikely to benefit from the supplements due to a potential ceiling 
effect [147].

Figure 2. 
Glutamate and neuroinflammatory mediators. Among inflammatory cytokines, tumor necrosis factor-alpha 
(TNF-α) upregulates 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA) receptors, on the 
expense of gamma-aminobutyric acid (GABA) downregulation. The rapid rise of TNF-α from micromolar to 
millimolar levels can lead to sustained nuclear factor-kappa B (NF-Κb) activation and neurotoxicity. A blunted 
TNF-α is not beneficial either, as by acting through its corresponding receptors (TNFR1 and TNFR2), it supports 
synaptic transmission by stimulating presynaptic N-methyl-D-aspartate (NMDA) and postsynaptic NMDA 
and AMPA activities, as well as assisting Glu transporters by regulating membrane trafficking of excitatory 
amino acid transporters (EAATs) and their recycling to the surface, added to conferring neuroprotection. 
Interleukin-1 beta (IL-1β), activated by stress, precipitates excitotoxicity by enhancing the postsynaptic NMDA 
pool and activity, by facilitating tyrosine kinase-mediated NMDA phosphorylation, increasing Ca2+ permeability. 
Interferon-gamma (IFN-γ), released from T-lymphocytes at high concentrations, can impair the sequestration 
of Glu by EAAT, induces tryptophan catabolism through activation of IDO, generating Glu-like compounds as 
quinolinic acid and enhances AMPA-mediated neurotoxicity. Interleukin-6 (IL-6) acts on soluble IL-6 receptor 
(IL-6R) to abrogate presynaptic Glu release and reduce AMPA and NMDA activities. Cyclo-oxygenase-2 (COX-
2) and prostaglandin E2 (PGE2) trigger the release of Ca2+ from intracellular stores, causing reverse efflux of Glu 
by EAATs, followed by Glu spillover to bind to extra-synaptic NMDA.
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Unfortunately, results correlating blood levels of ω3 PUFA to the brain levels 
showed inconsistencies, limiting their applicability as surrogate biomarkers for brain 
disorders, at least for the time being. In fact, ω3 and ω6 PUFA complement to main-
tain constant levels of unsaturated membrane phospholipids, so that they compensate 
for each other [148].

6. Blood–brain bridge, rather than barrier

The brain is no more that sealed-off structure from the rest of the body, as 
detected in mice lacking immune cells and depicting difficulty in social behavior 
[149]. Instead of crossing the brain, immune cells signal through cytokines, so that 
knocking out cytokine receptors on the neurons can disturb social behavior in labora-
tory animals [150]. In turn, the brain areas involved in positive emotions and motiva-
tion can alter immune responses in inflammatory and oncogenic disorders [151]. 
Although, in healthy humans, limiting the amount of Glu that crosses the BBB [152] 
protects brain Glu levels from fluctuations of blood Glu [99]. Glutamate can breach 
such restrictive entry by enhancing the blood-brain permeability, while triggering 
cerebral vasodilatation [153].

In vascular injury of the brain, whether ischemic or hemorrhagic, the concomitant 
sizeable rise of blood and brain Glu occurs [154]. Such elevations were also noticed 
in many neurological disorders, including AD, epilepsy, and schizophrenia [155]. 
Following traumatic brain injury, the rise of brain Glu persists for months or even 
years thereafter. Such BBB disruption, not only allows blood Glu to reach the brain, 
but prevents the escape of cerebral Glu to the bloodstream.

In primary hypertension, the increased arterial content of Glu was linked to the 
higher Glu entry into the brain [156]. Similarly, systemic injection of Glu exacerbated 
brain damage [157]. Conversely, medications that lower blood Glu can assist Glu 
efflux from the brain [158]. So, restoring Glu level in both blood and brain to normal 
levels is required to reestablish the brain–blood Glu homeostasis. In their review, 
Gruenbaum et al. [159] highlighted the disruption of Glu efflux, breaking the integ-
rity of the BBB, suggesting the feasibility of blood Glu scavengers in the treatment of 
depression following stroke.

One applied entity is the stress-induced aggression. During an anger attack, blood 
perfusion is increased, contrasted by cerebral hypoperfusion in between attacks, 
owing to stress-induce cerebral vasoconstriction [160]. Chronic stress causes dis-
organized BBB integrity, permitting the influx of mediators from peripheral blood, 
causing oxidative stress and neuroinflammation [161]. Altering the blood–brain Glu 
balance can excite excess Glu exit from the brain. To revert aggression and other sub-
sequent psychological issues, oxaloacetate (OxAc) [162], the substrate of the enzyme 
glutamate-oxaloacetate transaminase 1 (GOT), that consumes Glu to render OxAc, 
was given to reduce blood Glu level.

7. Tips for erythrocyte glutamate assay in CNS disorders

In the brain, Glu is taken up from the extracellular to the intracellular domain 
of neurons and astrocytes by bidirectional transport mechanisms that, not only 
maintains low/high extracellular/intracellular levels, but also acts as a source of 
extracellular Glu when low [163], through stimulating Glu release [164]. Similarly, 
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the Glu active transport in erythrocytes maintains a high erythrocyte/plasma (E/P) 
concentration and a low plasma concentration.

In children with migraine, erythrocytic Glu was employed to mirror a centrally 
enhanced cellular uptake of this amino acid. In this setting, measuring plasma and 
erythrocytic Glu revealed a significant decrease in plasma, with a higher E/P concen-
tration which was suggested as a reflection to mishandled CNS Glu turnover [165]. In 
contrast to the pediatric age group, adult migraineurs experienced elevated plasma 
and platelets Glu when measured during the attack-free periods [166]. Recently, 
stress, an aggression trigger, was documented to affect blood Glu levels [167].

A blood assay of Glu should be obtained after an overnight fast, to enhance speci-
ficity, avoiding misinterpretation due to nutritional factors, unless dietary manage-
ment is planned. A preferable practice would be to monitor plasma Glu at the fixed 
time of the day, if multiple testing is needed, as plasma Glu might fluctuate along 
the day [168]. For better and more accurate interpretation, multiple factors that can 
modify blood Glu should be kept in mind, apart from nutritional status mentioned 
earlier, age, gender [169], body temperature [170], and even blood sampling sites 
seem confounding factors [171].

Normal Glu in plasma and whole blood is 50–100 and 150–300 μmol/l, respectively 
[59]. In the whole brain, Glu concentration is 12 μmol/g [172]. The free amino acids 
concentration can be calculated using whole blood and plasma concentrations [173].

The inverse relationship between plasma Glu and nitrogen hemostasis implicates 
that plasma urea and ammonia nitrogen should be assessed as well.

It is worthwhile to measure more than one inflammatory marker (C-RP, TNF-α, 
IL6, IFN-γ, and IL-1β) to identify patients who are likely to respond to Glu-targeted 
therapies, since inflammation seems an incident predisposing to Glu excitotoxicity. 
This was corroborated when the elevated inflammatory markers in blood predicted 
the favorable antidepressant response to the noncompetitive NMDA antagonist, 
ketamine [174]. Also, the administration of the inflammatory cytokine and interferon 
(IFN)-α induced a high plasma TNF-α [175]. Moreover, the higher plasma CRP level 
in depressed patients was correlated to a higher brain Glu [176]. As implicated in neu-
ropsychiatric disorders, IL-6 promotes hepatic acute phase proteins, while processing 
neuroinflammation in the brain [177].

No study tracking the patients’ behavior to neuropsychiatric medications or 
dietary manipulations has targeted both the blood level of Glu and the inflammatory 
markers. So, elaborative research work is indispensable to elucidate the benefits of 
blood assays in prediction and management panels.

8. Conclusions

Glutamate is one of the key mediators involved in aggressive behavior. In neuro-
psychiatric disorders, blood or erythrocytic Glu level mirrored brain Glu fluctua-
tions. Anemia was demonstrated to affect brain Glu level, meanwhile precipitating 
aggression. Lowering blood Glu increased Glu clearance from the brain. Dietary 
manipulation was successful in controlling aggression, as inflammation and oxida-
tive stress have been implicated in altered brain Glu and aggression. Hence, blood or 
erythrocytic assay of Glu might help the diagnosis and prognosis of aggression, as 
well as planning corresponding therapeutic strategies ranging from simple dietary 
manipulation, up to complex pharmacologic treatments. The more advances in the 
scientific research, knowledge, and testing techniques, the more explicit will be the 
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dynamics of behavioral issues, the more feasible and successful will be the diagnostic, 
preventive, and therapeutic interventions. Nonetheless, Glu is not the only culprit 
in aggression, other explored neurotransmitters and inflammatory markers can be 
assayed and targeted as well, to obtain a panel of laboratory markers and plan several 
therapeutic alternatives using these mediators, hoping to prevent an outraged ide-
ation from proceeding to a devastating aggression.
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